ELF>@[@8 @qmqm@@@\\xk x{ x{ pyȕk { { 888$$Ptd    <<QtdRtdxk x{ x{ GNU.RP6nA؞R?C p"  #@012a@AT% $@   RmHa(yKݼ`ׇ {6}tkmOjAt#tH)M ,,qғ75kΑ(B9 S fQ{`جXݪ<ڟ"; 讋hؔq3`%osڃ1 8 @  ` h <         ( 0  P X  x  M    >  ` x  @ pH  h hp  `  X  P G  H  0 @8  X 8` = 0 O ( O   `  ( ( . H P @ p x )          8 @ P ` h        p  # ( 0 : P X : x    0      x 0 @ pH  h hp  `  X  P 4  H s 0 @8  X 8` . 0 ( (    h   (  H P в p x     p     " 8 @ " ` h          ( 0 ` P X  x          x  @ pH `h hp  `  X  P   H  0 @8  X 8` @ 0  (    |   w ( @k H P  p x            8 @  ` h ط    k     ( 0 P P X \ x  p  Է  `    x з @ pH з h hp ` `  X  P   H ̷ 0 @8 `X 8` 8 0 U ( N   G   ( P H P  p x   @  9  2   8 @ ` ` h     P     ( 0 M P X  x    ȷ  H y`  h    hj ; j = F    @, { p# { pd { cX jp P(      0 0(  8  x "   " 0   "8 0; { 0 { `# x  {  {( H |P rp |x @r | P "s  |( @~@ #|H p{` /|h P 4|  { 0f { Pe A|0 *X " @# @.  ( P~8 @% {  {  ^|0 @^h  p     @ 8 F ` "   " p+@ ||H  | 0t { g { g8 jP @,x `\ pX  k " . @   H X % w 0# q | 08 +@ |H pW` |h pV | h |    z  ` v R  Fz 0P x =z( 8 @s @ zH  X `f ` |h x d { P U \z , L y  B z pL 4 z   ( z( I8  @ vH pEX  ` vh Ax  v >  v @;  v 8  v @6 ` v 2 ` v( 08 ` @ vH P-X ` ` |vh *x  tv &  mv  #  dv ` x Zv  g Qv  ] Lv( `8 S @ D{H 0CX  J ` zh 3x < z  + Dv  " ?v    2{ p   -{   5v(  8  @ \{H X  ` {h x `  {   z   S{   <{   { f  @ yH @u` yh x ` w{ H } } } }  } } } } } } } } } ~ ~  ~ #~ & ~ (~ 0~ <8~ >@~ H~  P~ HX~ K`~ h~ Mp~ x~ P~ Q~ R~ S~ Z~ [~  ~ _~ c~ e~ ~ o~ s~ v~ ~ ~       ( 0 8 @ P X ` h p x                    ( 0 8 @ H  P  X  `  h p x          Ȁ Ѐ ؀      ! " $ % ( '0 (8 )@ *H +P ,X -` .h /p 0x 1 2 3 4 5 6 7 8 9 :ȁ ;Ё =؁ ? @ A B C D E F G I( J0 L8 @ NH OP PX T` Uh Vp Wx X Y \ ] ^ ` a b d fȂ gЂ  ؂ h i j k l m n o p q( 0 r8 t@ uH wP xX y` zh p {x | } ~       ȃ Ѓ ؃          ( 0 8 @ H P X ` h p x          Ȅ Є ؄           ( 0 8 @ H P X ` h p x          ȅ Ѕ ؅          ( 0 8 HHխ HtKH5 % @% h%گ h%ү h%ʯ h%¯ h% h% h% hp% h`% h P% h @% h 0% h %z h %r h%j h%b h%Z h%R h%J h%B h%: h%2 h%* hp%" h`% hP% h@% h0% h % h% h% h% h %ڮ h!%Ү h"%ʮ h#%® h$% h%% h&% h'p% h(`% h)P% h*@% h+0% h, %z h-%r h.%j h/%b h0%Z h1%R h2%J h3%B h4%: h5%2 h6%* h7p%" h8`% h9P% h:@% h;0% h< % h=% h>% h?% h@%ڭ hA%ҭ hB%ʭ hC%­ hD% hE% hF% hGp% hH`% hIP% hJ@% hK0% hL %z hM%r hN%j hO%b hP%Z hQ%R hR%J hS%B hT%: hU%2 hV%* hWp%" hX`% hYP% hZ@% h[0% h\ % h]% h^% h_% h`%ڬ ha%Ҭ hb%ʬ hc%¬ hd% he% hf% hgp% hh`% hiP% hj@% hk0% hl %z hm%r hn%j ho%b hp%Z hq%R hr%J hs%B ht%: hu%2 hv%* hwp%" hx`% hyP% hz@% h{0% h| % h}% h~% h% h%ګ h%ҫ h%ʫ h%« h% h% h% hp% h`% hP% h@% h0% h %z h%r h%j h%b h%Z h%R h%J h%B h%: h%2 h%* hp%" h`% hP% h@% h0% h % h% h% h% h%ڪ h%Ҫ h%ʪ h%ª h% h% h% hp% h`% hP% h@% h0% h %z h%r h%j h%b h%Z h%R h%J h%B h%: h%2 h%* hp%" h`% hP% h@% h0% h % h% h% h% h%ک h%ҩ h%ʩ h%© hATIUQH5) JHHu E1Ht'LHAąxHMuHDZ]A\ATI1HU1QvHtGH5b' HLHHExHAHEuH=HHEuH*ADZ]A\AWIAVIH5 AUIATUSHAPHLHH3IHu(LLH5cHH H81qLH8u9L H H56 1H HH5  1HH5 1H HH5 1H HH51 1]Hv HbH5 1:HK H?H5{ 1H  HH5 1H HH5 1H HH5  1H HH5w 1Ht HH5 1hHI HmH5 1EH HJH H0H HH5 HP1H HH5 1H HH5X 1Hm HH5e 1HB HH5B 1nH HsH G H8 1H5" =H HBH5 1IH#H  H RIh5 5Q QQH0HH5F 1HS HH5+ 1H( HH5 1tH HyH5M 1QH HVH5" 1.H H3L O L` 1H 2 HC H5 IHH  H RIj5 5! QQH0H]AWAVAUATUHHHw Ht)1H9,H H5`H8,Ll$A IHցL11ALAu 0 v8uHHuD$ 11D$$ALL$ .uBtILd$(1LH`LL<51Lf(r@ v뷹AHHu1H? H(1H=~H H(1H=~H H(HEHH-  H H(HH=H H(HH=H H(HH H5rH= (Hxv# >H*H- L}MtwE E!H}t7}"t I7HEHUHpHt 1IIHEHpuIHEH8He*}HW*H(WFH H9* )H H* H H) H H) H H)1Hl H)HJ H) H( Hz)H H`)2H HF)H H,)75*H H)1 eH~ H(ʚ;KH\ H(11H=7~{H4 H(HH H(H 8uHH$&6H H55 H= 9yAݨL-|AHH5hHNHtH= CHtE2H H5:HyAL-t|AH=5 CHuAL-K|AH=  _CH@ HtH=d GCH  HtH= /CH HtH=D CH HtH= BH HlH=P BH HPH=| BHx H4H= BHT HH=D BH0 HH=p sBHH= ^BH HH= BBH H"<$H& H= HHt He HV HG H8 yAL-zA*H5 H= H xH H=c H, H  HF H H +xH5( H=1 H-" nHt^H= H- CH= E/H H (H H: fHnH fH H0H= fHnHflfHnH݉) fHnH fHnflH*) fHnflH ) 'H5 H=i L%Z fLlVH6 H5 H- HH HH fHnHfHnL%m flL%   H5w H=p ZHH=FyH-  HHAHH}H5yxH}HMuHtH=xHHeA HH(zH5x(H-HMuH$H=x8HHA HHxH5rxHHMuHH=xHHA`HH|H5ZxH HAH HH6xH5)xWH HUA0HHxH5w&H H$APHHwH5wHI HAHHwH5wHAHHwH5lwHAHHwH5BwpH HnAHHJwH5w?HDAHHwH5vHAHHwH5vHAHHvH5vH HAHHvH5bvH HAHHvH51v_HdAHHovH5v5H:AHHOvH5u HHMuHH=+vHHA`HHtH5uHA@HHuH5uHHH5 IHt{1HIHu HuH| H5^TH8~I $uL@Mt6AHHyuH5JuHtHMu0H&HMuHAL-sAH= HH5.tH xRH HH5tH SRH HH5sHMuHH=4sHHH `RHy HH5srH RHL HH5s\MH sH HH5s7(H RH HH5sH tRH HH5sH RH HH5hsH RHk HH5YsH SH> HH59s~xsH TH HH5s]xRH TH HH5s H H= H HuH5 H= H H= H Hu H- H H H H{ ޻Hw һHs ƻHo 躻H1Ha H= H5:bH=lHH H2 H5 HHHMuHH= r1H5aH=Rl荼HH H H5 HH$HMuHNH= H 11H= HHP H5 H= H9HMHHMHAL-]AH= tBH={ tLDH=aDRH=e Ht7HHR u'{ HuHd H5`H81H= AL-\ArA L-\AZE1AL-\A?MA!AL-\$E1A@L-\A ML-o\ABAE1ARL-N\AMAWAL--\E1AL-\AE1AL-[AAʩL-[AjAԩL-[XAթL-[FA֩L-[4AשL-["AةL-[A٩L-s[AکL-a[A۩L-O[AܩL-=[AݩL-+[AީL-[AߩL-[AL-ZAL-ZnAL-Z\AL-ZJAL-Z8AL-Z&AL-ZAL-wZAL-eZAL-SZAL-AZAL-/ZAL-ZAL- ZAL-YAL-YrAL-Y`AL-YNAL-Y<AL-Y*AL-YAL-{YAL-iYAL-WYAL-EYAL-3YAL-!YAL-YAL-XAL-XyAL-XjAL-X[AL-XLA L-WA7AyL-WA'"AL-WA AL-WHMuH譻MIL蓻DH [AbH=[L-#XA+MAA`A.A RA=ADAUA6AmA(AzA+AA AAML-W=AL-WAAL-qWAAL-YWAAL-AWAAШL-)WAAҨL-WAAԨL-VAtA֨L-VA\AL-VADAL-VA,AL-VAAL-VAA L-iVAAL-QVAA,L-9VA A8L-!VAAML- VAAkL-UAlAxL-UA+TAL-UA LH54H81ڔHHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDH> H54H8j1HHDHH9tHuH;5> tfDH> HNH5HWH811@AWMAVMAUATUSH8HH$H$HHt$HT$$H$HDŽ$q$HDMMHD$$H@H$ HD$H@H$(H$HDŽ$H$HHD$$H@H$(HD$H@H$H$HDŽ$H$H6HD$$H@H$HD$H@H$H$HD$pH$HLMIHD$$H@ HD$HHD$H@ HD$P_H$HD$0HT$@H1MMHD$$H@(HD$XHD$H@(HD$`H|$@MHD$xH|$HHD$$Lh0HD$L`0WLT$E1MhLLMMHD$$H@8HD$ HD$Lh8Hl$(HD$8MMILHD$$ H@@HD$hHD$L`@MHD$L$E1L$HPHHD$H$L$MIHpHHD$(H$LL$HIċ$LIMLHILd$hL9$uMIL$L$H$L$H$HD$8HD$8HT$ HT$(H9LMHLI9HD$xHt$XHD$xHt$H9D$`GMHD$0HT$HHD$0HT$@H9D$PMMHD$pH$HD$pH$H9$]LMIH$H$(H$H$H9$H$H$ H$H$H9$FH$H$H$H$H9$H8[]A\A]A^A_@MHL$(E1LHLIL$L$L$6HL$hL$L$L$HM9uB@MYHE1fHLLLT$8L\$(IԖHL$ L\$(LT$8HM9uMHL$1HLLH莖HLI9uIHHL$@Hl$X1fDHLLHNHHI9uIHH$Hl$H1HLLHHHI9uH$H$H$1HLLHΕHHH9$uH$H$1HLLH莕H$(HH9$uH$H$1HLLHIH$ HH9$urH$H1HLLH H$HH9$uaff.@USHHH-X8 HHEHkHHEHtH/ HEH{ HHk HEHtH/HEH{(HHk(HEHt H/H{PHtHCPH/|HxHEHxHtH/tNHH9t,Ht'H@@Hǃt~HǃH1[]f{fkzfD[OfDKfD;fD0͡H=1HH}HǃH/h^fHWD_@GDHtWH H1LH9t)HRLIHLEDMHM 1HIHLH)HM CHSHvr >h7hfH5 HL$HVgHL$Hك IHH@HЃ Ht$H<$LAeiHHF H9 DxH& L(IEMcIIHHH IHD$LD$tgLD$HD$FI8M(H/PgL Hm aHqff.HH`#hHtHfMH HD$H=.HD$H@HHclcfHtHfIH wiHD$H=HD$H@ATHǜ LOL9t.IXHLAM~E1 HI9t7H;TuH;=! H?LtLA\fLA\DHWxHLH>HGHHFlMLL9H9AD M9AL9AE D!DOAADHH)HH=o NoVPAotjobf oin`AoptFoz ~0oy ~pAo@ t"or0v@oI0AoP0tH6A|$ JA~ _IT$I;V0LePL5Ձ M9I9L$I9N„A|$ IA~ fIT$I;VGID$INH9@H@t H!A|$ Av 8@ I|$H@ UIvHȃDA9HtH\Q@D%wM9L5 M9tMI9NtjLL NIHNH;g L;%= M9LII,$AE EaDM9uGLLMIHtIH; H AH; Du M9I,$EuiL^PH EyUnH=9H H{HH/aHCH[]A\A]A^A_ED%HEHHE HCE0C$HE8HC0HE@HC@HC8HEHC HC1AtHE(HC(HEH{H/t9HkL9t1H[]A\A]A^A_HmHCKOfID$IvH9@H@t HED$ A~ D@@8A jMd$H@ IvH#RA<$DA9BHLHyNH DHxNM9uM9 DH- L-*t HELMH=*H1HLAHKHH螪HmoHT$ t$Mt$T$ t@MfDL@FI,$H A4 fDIt$0IHA@LEf.I,$DwLIMa@LOH i @LNH I @MF0IvH@IE@LNnyLNfDA<$DH1LKHHo)A<$DfIN0IH@IDHfIL$0IH@IDHiFHuH H5вH88MfDD]DQH H5jH8MJAWAVAUIATUSHHG H; t"HLg HL[]A\A]A^A_H-is HEHHELgxHcWlM4M971I<$IZLHHtbMtI/tGHH\DIHHmtIM9LHJfDLJfDNXH H=E1HEHHEHt'M I/LJHJfDI߾ZYfILIHHEI} H/tIm HEHPHUMe t@#JE1ff.AUATIUHHGH5s HHHHtI|$`JIHHHEIHEMHHEt,I,$t HL]A\A]LIHL]A\A]HpII,$uH 'QH=E1HL]A\A]CH?HHEtFI,$uLt$ Ht$ HmuHHwfHHfDAUATUSHHH1JIHzLHcClI\I9sLI}IHHID$I;D$ HEIT$H,HID$Hmt:IL9wL?H]I,$H[]A\A]f.HGfDHclGHHH=m H,CHHmuHH$GH$f.#I,$EtZH [H=H1[]A\A]HL]FHmuHFGI,$%EuLT$ 4$&G4$T$ DEzfLH$FH$CJHmtC4(HFCfAUATUSHH`H1~HIH2LHcClI\I9sHI}dGHHt|ID$I;D$ HEIT$H,HID$Hmt>IL9wL=HkI,$ugLHD$EHD$SfHEfDAI,$LA>EH }DDH=E1H[]A\A]HL}DPI,$uLfEHmAA>uHKEfAA>~H-z L%j HEHHtKH=?uP1HLHBHtUHAA<HmlH1L"DHHuAA<A)?HuH H56H8Eff.AUATUSH1HLFH#LkxIHcClI\I9sHI}5EHHt}ID$I;D$ HEIT$H,HID$Hmt?IL9wL;HI,$uaLHD$CHD$Mf.HCfDI,$;u LC;H S6H=L1H[]A\A]fHLUBWI,$uL>CHm=uHt$&Ct$뙾5I,$@uLC@tff.AWAVAUATUSH(L% Ll$`Ht$HT$M9cHc߅hL IMοCIHHj H-x MgI$HIG Mw(HELMH=a<1HLAHV?HI/oT$`o\$po$o$o$o$o$o$o$o$o$o$o$ (8HXhMtIE@6GIEH5r LHHIMYHxH/LxIH8I$HIAUhAoMpAoIM`AoUXHHD$hMpUh]lHHEHHLePUXALHDžfInŃHfHnflExH9s%Hf.HH9v H8xHLHMXI9E1I}AIHMt I.3H}X@IHLH8IIMHItsHd I9Gu{IGHPHlHEwHI/tILuXL9MOfDL IMDL0?H I9GtLAHH|HD$;H|$IH/uZ>SLI>LuXL9yHE~D$ID$HPHUL>II.9HIfLh>@IEH(L[]A\A]A^A_fH H=0MpHEE1HHEHtMtI,$uL=fDH=fD=fDM닐HIH H=qH1LHD$H@AWAVAUATIUHSHG7HEAMujHAAVH rDDH=Hmt&D1H[]A\A]A^A_f.HX9fDL(4HHL10IHfHEH}H;= yH5a H9tT6uKLHI蝵HI,$HuI/AAL8HUBtHZ LuH=.2LLH5HtfI$IHI$t;I/tEHAAH+H/8f.L84L82HuHm H5H89fDI,$IDE1+AzA L%Ao I$qLuMzL}IIHmt5LLL虽I.HrLT7eLG7mH:7AWAVAUATUSHH@lAAAA~gHLgLP1DpDHtP)HcHI LH9H|PH1H0HLHtHHݐy/HՐy$HA9H[]A\A]A^A_H=Il H5کu3H 2H=e.H1[]A\A]A^A_@ATUHHGHDWlH<$HwxIHD$HLE'MH$H9L9AD I9M9AD !AR„HD$H)HxH=oD)L$o)T$PAo)$tsof)d$ oi)l$`Aop)$tLo~ )|$0oy )|$pAo` )$t%oF0)D$@oI0)$AoP0)$DЃAt"HH4HtH HLPIHĐLHH{@H; HoHEIHEHtHL]A\fHh4HL]A\f.H$H9L9 AR„RHD$H)HxH=:o.Dfv)l$o1)$)t$Ptao^)\$ oy)$)|$`t@on )l$0oq )$)t$pto^0)\$@oa0)$)$DЃAHH4HtHLHDŽĐHTP HHH >AE1H=q,H H=THL]A\fDHHD$HHD$PIH$AHFHD$HAHD$XI@H$AHFHD$ HAHD$`I@H$AHFHD$(HAHD$hI@H$AHF HD$0HA HD$pI@ H$A[HF(HD$8HA(HD$xI@(H$A3HF0HD$@HA0H$I@0H$AHF8HD$HHA8H$I@8H$Hg HHxH9HXHHqH~ 1f.H;THH9uH HJH5ZHWH81l+HmH ,E1H=aHL]A\H -E1H=Ȥ3HEHFHHD$HHDŽ$HD$PAHFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AHFHD$(HAHDŽ$HD$hAhHF HD$0HA HDŽ$HD$pA@HF(HD$8HA(HDŽ$HD$xAHF0HD$@HA0HDŽ$H$AHF8HD$HHA8HDŽ$H$H/YH H5H803HHH9HuH;( DAVAUIATUSHHc.HIƅL%= I$n/HHHfHnfInLe(L%1e flEID$HH,H=U(uj1LHI+MtEHmI<$M$[L]A\A]A^L% I$O(HHmE1H H=$g[L]A\A]A^I.tJI,$t3@L-[L]A\A]A^@H-AL-fDL-fDH-dfDL1H,IH0f}4H H5H8. ff.AWAVAUIATAUHSH*HELA'HLH1$IHbIc,IHvHL$IIEMHIEEI,$*HEH}H;=2 TH5 H9t )CHUB4HZ LeH=`&LLIX)MoIIHII,$1L6贈Imu L+DH H=&HmD#H[]A\A]A^A_HIEtAI,$uL+Lx+Lh+I,$LK+I,$PfDLHIڧII/tM1ufDL+MDH*L*E1l[%HI/I1L*fDL-b IE}ImhLK*VfDH]HLeHI$Hmt/LHLAH+IH)H)HW H5H8+ff.AWAVAUAATAUSHH$T$H@`HD$HcH WGHH :GHH GtuHH Gt\HH GtCHH Gt*HH GtHH E<.H$ l111AH$(I0At}H$00AthH$80AtSH$@0At>H$H0At)H$P0AtH$XH1HHHEH9ÍD[C$E9bE9EEME~1H$ H$E1H9H%IcA0'IH$H(IHHHx(HH'IHVHh(fInfInHflH=bV @HI$HQHI$C L%\ H5M I|$H9G#:LHIH{Hm LAUI,$ f.D޽AH LH=轸D#DH 'AH=A菸DWHD[]A\A]A^A_fH`HH?EH$ U1H`IIHH?HIDHHHHDHI$ ۗAfIT$BHZ  Md$H=u'LHI"MH,AޗHmH*%DHDŽ$`AH$o AH$(H$H9tAH0HDŽ$hH$e AH$0H$H9t"AHHDŽ$pAH$e AH$8H$H9t"AHHDŽ$xAH$ A2H$@H$H9t"AHFHDŽ$AH$AH$HH$H9t"AHHDŽ$AH$AH$PH$ H9t"AHHDŽ$AH$%AtFH$XH$(H9t"AHZHDŽ$AH$ H$ H$H$`HHHHHAoH$(H$hHHHH`HA8H$0H$pHjHHHx"HAH$8H$xH3HHHK$HAH$@H$HHHHM%HAH$HH$HHHH%HAt`H$PH$HHHH%HAt-H$XH$H_HHH&HH\$H$HH$H$0HH!HHHH HHHAoH$L$8H !HIMTHA8H$L$@H HIM HAH$L$HH HIM"HAH$L$PHg HIM#HAH$L$XH0 HIMj#HAt`H$ L$`HHIM?#HAt-H$(L$hHHIM$HHD$H9v H9HD$EDo$EVDo$ Do$0Do$@Do$Po$`D)$o$po$D)$o$o$D)$ H$)$Po$o$o$D)$0HP`)$`D)$@)$p)$)$)$)$)$EIcH̐H;PHHAfAvHcHH;PHA/AvHcHoH;PaHAAvHcH8H;P*HAAvHcHH;PHAAvHcHH;PHAtWAvHcHH;PHAt$AvHcHdH9PVo$o$o$o$)$H$o$ o$0)$o$@)$ H@`o$P)$0o$`o$p)$@o$)$Po$)$`o$)$p)$)$)$)$)$H̐~H;PpHAYANHcH̐GH;P9HA"ANHcH̐H;PHAANHcH̐H;PHAANHcH̐H;PHA}ANHcH̐yoH;PueHANANHcH̐y@H;Pu6HAANHcH̐yH9P<$F}l$L$sH$0H$`HEt$H$(LL$wAYAZH|$E1LLLHH=QO 1H5;sfAA—H=O H5qzDIm&LėA uDH=N H5!zjf.E1IƗImuLI.tAHZfLfDH=AN H5(Jf.DDD)%HHcHHH0HpH0HpAEAHAT$HHcHH0HpH0HpAEAHAT$HHcHH0HpH0HpAEARHAT$HHcHH0HpH0HpAEA HAT$HHcHH0HpH0HpAEAHAT$HHcHH0HpH0HpAEAt~HAT$HHcHH0HpH0HpAEAt:HAT$HHcHH0HpH0Hp5HDŽ$HDŽ$taHDŽ$tPHDŽ$t?HDŽ$t.HDŽ$tHDŽ$ t HDŽ$(HcH$0qH0H9H$0fHn$0$@t$Pt$`ȃt HH0VH$pH6 ȗ+fDH=J H5Jf.H=qJ H5ѰXf.DD))HcAEH HH H`HԠH`HĠAD$AHAUH HcH H`HĠH`HԠAD$AHAUH HcH H`HĠH`HԠAD$AQHAUH HcH H`HĠH`HԠAD$A HAUH HcH H`HĠH`HԠAD$AHAUH HcH H`HĠH`HԠAD$At}HAUH HcH H`HĠH`HԠAD$At9HAUH HcH H`HĠH`HԠeHDŽ$ /HDŽ$(taHDŽ$0tPHDŽ$8t?HDŽ$@t.HDŽ$HtHDŽ$Pt HDŽ$XHcH$`qH`H9H$`fHn$`$pt$t$ȃt HH`VH$HfEHHHnfHH=F H5!jf.H=F H5x:o$<$Fo$ o$0)$o$@o$P)$H$o$`o$p)$ o$o$)$0L}`o$)$@o$)$Po$)$`o$)$p)$)$)$)$)$aEVEkIcHĐL;PHIHA2AVHcHԐ{H;PmHAAVHcHԐDH;P6HAAVHcHԐ H;PHAAVHcHԐH;PHAVAVHcHԐH;PHAAVHcHԐylH;PubHAAVHcHԐy=H;Pu3HAAVHcHԐyH9PMcJAFALcJDPMcJDPnMcJDPOMcJwDP0McJXDPMcJ911H$jAH$At}H$tAthH$AtSH$hAt>H$At)H$ AtH$(H1HHHEH9ÍD[C$L$ IcLMI4L9vLfL(HH9wLLD$(HT$ HT$ LD$(HHD$fHnD$)D$0EHLH|$@HT$ HT$ H$EV<$FIc~DHD@HT8HH)Lx@L8HH9uEH|$@AAH|$Hu HDŽ$AH|$Pu HDŽ$AtlH|$Xu HDŽ$AtRH|$`u HDŽ$At8H|$hu HDŽ$AtH|$pDAt H|$xCo$<$FEVo$ HE`o$0)$o$`o$@o$p)$o$P)$ o$o$)$0o$)$@o$)$Po$)$`o$)$p)$)$)$)$)$IcHԐH9PHAARHcHԐ{H;PmHAARHcHԐDH;P6HAARHcHԐ H;PHA[ARHcHԐH;PHA$ARHcHԐH;PHAARHcHԐylH;PubHAARHcHԐy=H;Pu3HAARHcHԐyH9PoH$H$`HESHT$HH$(LD$Pbe_AXH|$fol$0fot$@fo|$PfoT$`$fol$pfo$$ fo$fo$$0fo$$@fo$$Pfo$$`fo$$pfo$$$$$$$H$HH|$@qo$HE`o$ o$0o$@)$o$Po$`)$o$po$)$ o$)$0o$)$@o$)$Po$)$`o$)$p)$)$)$)$)$H$H9$PH$A1H$H;$XH$AH$H;$`uH$ AH$SH;$hEH$(AH$#H;$pH$0AtuH$H;$xH$8AtIH$H;$H$@AtH$H9$H$H|$LHfH~D)$D)$D)$ D)$0D)$@)$P)$`)$p)$)$)$)$)$HH;$PH$HA1H$rH;$XdH$AH$BH9$`4H$ AH$H;$hH$(AH$H9$pH$0AtuH$H9$xH$8AtIH$H;$|H$@AtH$^H9$Po$o$o$ o$0)$H$o$)$0H$po$@)$H@`o$o$P)$@o$po$)$ o$`)$Po$)$`o$)$p)$)$)$)$)$HVH;$PHH$A1H$&H9$XH$AH$H9$`H$ AH$H9$hH$(AH$H9$pH$0AtuH$jH;$x\H$8AtIH$>H9$0H$@AtH$H9$D|$E. L$ IcIL9 fDIII9rH$H$D$JDl$D$E H|$HGHHGEAMcJZEVAMcJ:EVAMcJEVAMcJEVAtfMcJEVAtJMcJEVAt.McJEVAtMcJEH$ 11AH$- At}H$ AthH$ AtSH$ At>H$ At)H$ b AtH$(H1HHHEH9H$H$A4RHHd"H$$HA4EVL$8Dt$E1H$MIDLE1LLI{L$0L9u܋<$ALMDt$DT$@H$0H$`Ht$H$EH$(L$ZL$[L$Y^DT$M~3,$E1DLALHIzL$0M9uً,$HrHHHHHEH$L;$PH$IAH$H;$XH$AH$H;$`H$ A{H$H;$hH$(AKH$H;$pu|H$0AH$y^H;$xuTH$8AH$y6H;$u,H$@AH$yH9$EVAFMcJJ0HH?H$1H0IIHH?HIDHHHHD?HXH $CHDŽ$HDŽ$1I?H/HL$0H9u<$HH$0H$`Ht$H$AH$(L$WL$`L$XZM91I$HHL$0L9uH$0H$8H$@rH$HaH$PPH$X?H$`.H$h!H H5_H8JHL$@L$IA*H$HL$HAHD$PH$HAtlH$HD$XAtXH$HD$`AtDH$HD$hAt0H$HD$pAtH$HD$xAtH$H|$@ HDŽ$HJ0HH?EH$k1H0HHHH?HHDHHHHDH$`H$hiH$pXH$xGH$6H$%H$H$LH$`1HH?S,1H$111<$FjEA]BDH$0H$`Ht$H$EH$(L$1TL$L$A[[MAEVL$8H$HD$H$E1HH$HAA3o$<$Fo$0HE`)$o$ o$@o$P)$ o$p)$o$`o$o$)$0o$)$@o$)$Po$)$`o$)$p)$)$)$)$)$9EVEZf.DT$L$nDT$H$HH$~_AH$1l$DDd$ L$8IHLE1LLHrL$0H9$uADd$ l$D$H$D$L$ HP`IcIL94H$H$D$D$DT$H$DT$$H$H~WAH$Dd$E1L$8IIDHALLI rH$0M9uDd$<$HL$0H94MEV[QG)si1HMHHH$0H9u[H$H$O1EI?H/t`L$0HH9$uEKH$01HH?E1wHL$0H9$uH$01HH?AėH=' 1OtH$HT$ LD$(*H ՍH=$fA9sAUATUHHGH5<# HHDIMID$H5" LHH'HI$HH!I$HHEH5Q HHHIHEHMHEHtGHH L`H=6$ HHHmt.H]A\A]@HfDL_HHD$HD$H]A\A]@AtDH [jH=eǂH1]A\A]IHAvI,$uL3럐IAyHm}HpfA|AAWAVAUIATUHHGH5E! HH}HHWHEH5 HHHIHEHMKHEHID$H5Z LHHgHI$HHAI$HL%$ H5n I|$H9t IT$BLr #Md$H=wULLAIMIH fHnfInH=! Hfl@)Ht\ImH]A\A]A^A_LP'LLjIHuDAAgImAfA1DDH ljH=b8H1]A\A]A^A_H]E1LHD$HD$H]A\A]A^A_HmA)I,$AfmLf`LXRAfA>H{AAfHmH @{IoAfD[HkAAgHuH+ H5lSH8HDAWAVIAUI1ATUSH1H(H= BIHH@IULH5 HHIMLD$I~pBLD$HIAgLD$HI;LpH; I9EZIELLLD$LL$LL$LD$HINI)ImI@HH0H=RLD$wLD$1LLHhHLD$I(I.HEH; mL- L9mHHH HH5nH81 D$}HmHDHHHI~pIHH H9ELMM~LuIIHmoLD$LL$LL$LD$HI]MOMDIEMlIFHH;H=P@1LLHHI/I.HEH;. kL- L9HEHMHPHUHU HH9 HHu!H)L@HH)HBI8HH)HpIH1HoD HH9uHHHHH9I)H)IvLD LHHHHH9tl;HBH9v]BD;HBH9vLBD;HBH9v;BD;HBH9v*BD;HBH9vBD;HBH9vBD;HEHHEHIEI,$t&HmMt3H(L[]A\A]A^A_E1LM"HtHmuH@LBL(HLD$LL$LL$LD$pLLD$LD$fLLD$LD$fLxMLh3HXI(D$}ImMt I)MtE1I.Mt I/t$H ɂ1H=[6yI,$E1D$}I(uE1LLL$MLL$nImcLLL$LL$LDLpjL`KLP)1a}H H=[yxM5H)1H T HTH9u}LD$INLD$HI_11LL$HHD$}HA H5LH8}4 LD$HD$}E1ɻ1LLLD$LD$HHHiI1x}}D$}E1ID$z}E1ɻIME1D$|}HIL11|LLD$LL$LL$LD$HID$}zL- L9HHH҈ HdžH5H815D$}#D$}HHS H5JH8D$}E1HD$H H5ZJLD$H8LL$LD$D$}ID$}E1ɻfHHIHHtLЅt1H HHÐLHHt8H(uH ~H=W3u1H@ff.ATIUHHHGHtHHHEHLP0HHt`H(tHk HH]A\kf|H "~H=WtH1]A\f |@AWAVAUIATIUSHLH(HD$ Ht$PHD$(HD$0^{HuH{`HL$ E1HFhHCHLLP0HHlH(HHEHcSlHH9rHH9{H8xH- L% HEHHH=G/1HLH%HHA=HmsDH |{H=HVA sHT$HHt$@HD$ HD$(H|$8HD$0111HT$0Ht$(Ll$8H|$ HT$L|$@Ht$H\$HH<$3H<$Ht$HT$,LHLLFHT$0Ht$(H|$ HD$ HD$(HD$0H {DH=U/r1UL% I<$6AMlHUPLmLS`H}MMLELnI$LH([]A\A]A^A_@IIH{APM'HHL% [LT$H|$L$H$L$H$E1H|$L?]LT$MLH}L$H$MDL}@L$H$LLA\fL{fDHhzAYH1LHH;ABDt{AS HuHm H5DAH8ff.AUATUHSHHHHH HD$HD$HxHFHD$ HD$(HD$0HD$8H>H9t0HXHtLHqH~c1HH9tOH;TuHGHEHH}HHH[]A\A]DHH9tHuH;؁ tfDHT$ Ht$H|$4@f@ϘHcnHD$(HZH HHD$0HD$8IH@HD$(HEL- Il$ID$ HD$0HD$(ID$(IEHD$0HHFH=B@=1LLH6HH\$0H|$8H/HmH\$0HD$8HD$0H|$Ht H/HD$H|$HtH/tzHD$H|$ HtH/tQHD$ HH;=DHHD$kHD$HH[]A\A]H H;f+|fDSfDH#1LLYHD$0HAyAyHD$(H|$0Ht H/HD$0H|$8Ht H/{HD$8H=8 DH=LPH 0vlHT$(Ht$8H|$0-H H|$(HH/\HD$(H|$0H/:HD$0H|$8H/H|$HT$ HD$8Ht$HEHxHAH|$HT$ Ht$H|$(Ht H/H|$0Ht H/H|$8Ht H/H=POH 4uDDkHEHx1AyH|$(HiH/_$Uh{HuHr} H5?H8HD$0AyAzA2 ff.fSH`~ HFH9t H;} u^HHt)H(tHH[f.;ftH sH=(Ncj1[HHH| H5}tHtH81tff.AUIATUHIHtL]A\A]H} H8)tHEH5 HHHHHIEtEHELHHHt5HHEHHEHt)IHgHZLHHƾ1qHt1H rH=%M0i#/qOHZH1qAUATUHGHHIIH5 HHHLLHHEx5HAHEt D]A\A]@H8D]A\A]HqHEtIAH qH=hLKhD]A\A]fkHgqfHqHPH| H5?LAH81Mf.ATIUHHGH5 HHHHHELHH@pHtJH@HtAHMHQHUHt>Ht H]A\ÐHHD$HD$H]A\fDK`fuqHtFH pH=KgH1]A\@;HHRsq뻐Huq뫐AUATUSHHHIŋClL%y I$HHHfHnfInLe(L% flEID$HHH=:u`1LHIMt;HmHL[]A\A]f.L% y I$YCHHmpt~H ZoH=cJE1eHL[]A\A]DImt9I,$t"pH@HL[]A\A]fL(fDLfDHppfDL1H[IH@f.p8H7w H5x9H8ff.AVAUATUHSHH LnHD$H8IHnHEH{H/HkHEHH5 HH5IM7H5nLPH5nLqIHAoEH5 CAoMK(IE HC8HEHHHHHHH/t(HE1I,$tH D[]A\A]A^sѐLhH D[]A\A]A^KfDIMDIzHFHHD$IH>Hl$fD{IH mMAH=Gc9H- L-* HEHHsH=77z1HLHHnH-Hmp H mH=TGAb@H-fDHHJ@HH5Q LIHVRHHD$IFHLmfHHUt HkH57@AUL jAH akH81XZH lH=mFAaDHt$ T$8T$t$ H1LHHflHuHhs H55H8lHT$LLLjH5 d(2fAVAUATIUHSHHHlt LnH$HT$M:IIMHkH kHOHjL eiLOL@HHr AUHjH5>H810X*CZH j H=&EE1.`HL[]A\A]A^fDHV H}HHHsE1H AHEH jQPjQHPj5J WH=r  IHPHEMHHEtHJHL[]A\A]A^f.IIML;H5 LIHVIqH$HMH<$HT$ DHHEt&H liSCH=C^@HfDoFL)$H~HL=iLLH5K &sCK@HFLH$`IDH5 LHVHtHD$IFLm@AVAUATIUHSHHHq LnH$HT$M:IIMHihH YhHOH'hL fLOL@HHp AUH3mH5;H81X@ZH g H=BE1~]HL[]A\A]A^fDHV H}HHHsE1H AHEH 5 jQPjQHPj5 WH=Zp T IHPHEMHHEtHHL[]A\A]A^f.IIMLH5$ LIHVIH$HMH<$HT$ DHHEt&H f) 0@H=fAA\@HfDoFL)$H~HLkLLH5K V#s?K@HFLH$IDH5Y LHVHtHD$IFLm@AVAUATIUHSHHH o LnH$HT$M:IIMHeH eHOHweL dLOL@HHjm AUHeH5J9H81X?ZH Ge H=&@E1ZHL[]A\A]A^fDHV H}HHHsE1Hg AHEH jQPjQHPj5b WH=n  IHPHEMHHEtHHL[]A\A]A^f.IIMLH5 LIHVIH$HMH<$HT$ DHHEt&H d ?H=>Y@H0fDoFL)$GH~HLcLLH5{ ss?K@HFLH$IDH5 LHV-HtHD$IFLm@AUIATUSHHH HZl LfH$HT$M,IIMMHcMH bHcHIHHj I?ATIH56H8L bA1 X>ZH bZ H==E1XHL[]A\A]HV HFLHHsH H=[j E1I$L jAPQjAPAQLj 5 P II$HPMtjHI$~LDHL[]A\A]fDIIt`ML?HHH$HT$:fHI$H a (?H=<WoFL)$H~HLaLLH5 >y>HFLH$HHdH5M LHVHtHD$HE뒐L8QH5i LHVHtH$Hff.AWAVAUATUHSHH(L5i LnH$HD$Lt$HrIHIHV(HE LMHHHsH=h AHEHAVj5 5 j5 Pj5  IHEHPMHHEH(L[]A\A]A^A_HHH5 LIHVI~H$HLmDIH _H_AHMEIHHkg H_H5M3AUL D_H81ʼXe5ZH A_ H=x:E1T>LHXII[qMIHFHH$NIH5l LHVHD$H3IML $HD$HT$8f.IHF(HHD$HF HD$HFH$ԽIM~HL~^LLH5E 0yS5fHHEt&H ^ 5H=F9S@H8fDH ]AXfDH5 LHVH`HD$IMfDHF HHD$HFH$IHHle H y]H5N1jL E]AH]H81辺Y^I5H ?]AAVAUATUSHHL j H-;f LfL $Hl$HMI;I!MMH\MH \H\HIHHd I?ATIH50H8L |\A1X4ZH x\a H=7E1QHL[]A\A]A^ILHHsH H=d AI$H LUjRPjRLPj5  II$HPMHI$xLHL[]A\A]A^LV LNfIIIIt]MHIHL $LT$fHI$H P[ 4H=6PoFH)$蟺H~HLQ[LLH5} y4vHFHH$`IMdH5 LHV葽HtHD$IF뒐LQH5A LHV]HtH$Iff.AUIATUSHH(H H H_ LffHnfHnflHD$)$MIMIH5c ILNLHHsH=b AI$Pj5l QLj5 RLj5  II$HPMHI$t0H(L[]A\A]fIujLV(Hb HV lfDL証H(L[]A\A]f.Hqb II8fDHYb HV IDH &YAHH` H;YH5,ATL XH81WXN4ZH X H=]4E1UNH(L[]A\A]IM?IHFLH$HH~TH5 LHV"HtHD$HH~.H5x LHVH<HD$HH*L $HT$LT$H l H-a MH WHWMHII?IAIHF(LHD$HF HD$HFH$Hr@HI$t&H |W\ w4H=3M@L蠺fDLHH#H5 LHVHH$HHF LHD$HFH$oHHL'WLLH5y :4fAUIATUSHH(H H H \ LffHnfHnflHD$)$MIMIHu_ ILNLHHsH=@_ AI$Pj5 QLj5 RLj5D  II$HPMHI$t0H(L[]A\A]fIujLV(H^ HV lfDLH(L[]A\A]f.H^ II8fDH^ HV IDH fUAHH8] HUH5)ATL UH81藲X3ZH U H=0E1JH(L[]A\A]IM?IHFLH$-HH~TH5F LHVbHtHD$HH~.H5 LHV j5^ Pj5E  IHEHPMHHEH(L[]A\A]A^A_HH5 LIHVI.H$HLmDIH QBHSBAHMEIHHJ HBH5AUL AH81zXn0ZH AXH=E1x7>LHII[qMIHFHH$IH5 LHV8HD$H3IML $HD$HT$8f.IHF(HHD$HF HD$HFH$脠IM~HLsALLH5b y\0fHHEt&H @0H=I6@HfDH @AXfDH5 LHV5H`HD$IMfDHF HHD$HFH$诟IHHH H )@H5jL ?AHy@H81nY^R0H ?AAWAVAUATUHSHHL5H LnH$Lt$HIAILV LMHHHsH H=H AHEH HAVjRPjRLPj5  IHEHPMHHEHXIII9MMH>H >HOH>L ?=LOL@HHF AUH%?H5H81 X/ZH >H=E14HL[]A\A]A^A_fDMHHEtvH 4>R0H=63H舝H5 LIHVI辠H$HML $LT$Kf.HfDoFH)$H~HL>LLH5C_ ~y/HFHH$IwH5 LHV HtHD$IGLmD@AVAUATUSHHL-BF LfLl$H8MIMH<H <HILHN;H?L <MLIL@HHD ATH1=H5H81 X[/ZH <H=E1 2HL[]A\A]A^fHVLHHsL H=gD E1I$H LAUjPAQjPAQjP II$HPMtxHI$uL6HL[]A\A]A^fDL|HMIHFHHD$HNHT$>f.HI$t&H t;/H=0@L蘞HT$LHL;H5\ (yM/f.H舚IHhH55 HHV蹝HtHD$IF=fDAWAVAUATUHSHH(L5C LnH$HD$Lt$HrIHIHV(HE LMHHHsH=4D AHEHAVj5 5 j5 Pj5  IHEHPMHHEH(L[]A\A]A^A_HhH5 LIHVI螜H$HLmDIH 9H9AHMEIHHA H):H5m AUL d9H81X.ZH a9]H=E1.>LHxII[qMIHFHH$nIH5 LHV訛HD$H3IML $HD$HT$8f.IHF(HHD$HF HD$HFH$IM~HL9LLH5Y Py.fHHEt&H 48 /H=-@HXfDH 8AXfDH5! LHV襚H`HD$IMfDHF HHD$HFH$IHH? H 7H5n jL e7AH 8H81ޔY^.H _7AAWAVAUATUHSHHL5]@ LnH$Lt$HIAILV LMHHHsHI H=? AHEH` HAVjRPjRLPj5`  IHEHPMHHEHșIII9MMHc6H S6HOH!6L 4LOL@HH> AUH6H5 H81zXQ.ZH 5H=E1x+HL[]A\A]A^A_fDMHHEtvH 5Xz.H=F)+HH51 LIHVI.H$HML $LT$Kf.HxfDoFH)$菔H~HL5LLH5SV yA.HFHH$PIwH5 LHV}HtHD$IGLmD@AWfAVAUATIUSHH(L5= LnHD$Lt$)$HrIXIHV0HK(HC LKHI$It$H== AHEAVj5 QHj5 Pj5  IHEHPMHHEH H(IH5> HIHV^H$H<LkDIH3H z3HMHAUH 4L@HD; H5-L &3H81謐X-ZH #3H=E1(H(L[]A\A]A^A_LI^HHBJcHHF0HD$HC(HD$HC HHD$HCH$IItlI~.IML $HD$HL$HT$-MIH5 HHVHD$H1IH5 HHVݔHD$HIzfDHHEH 1-H=e'H5 HHV}HtHD$IM#HLF2LHH5R z-CH訔qHFHH$IHH-9 H :1H5jL 1AH1H81Y^-HH8 AH5jL 0H 0H8H{11:_-AXff.fAWAVAUATUHSHH(L59 LnH$HD$Lt$HrIHIHV(HE LMHHHsH=9 AHEHAVj5 5~ j5 Pj5  IHEHPMHHEH(L[]A\A]A^A_H8H5Q LIHVInH$HLmDIH /H/AHMEIHH[7 H0H5=AUL 4/H81躌X3-ZH 1/sH=8 E1$>LHHII[qMIHFHH$>IH5d LHVxHD$H3IML $HD$HT$8f.IHF(HHD$HF HD$HFH$čIM~HL.LLH55O y!-fHHEt&H .\-H= #@H(fDH -AXfDH5 LHVuH`HD$IMfDHF HHD$HFH$IHH\5 H i-H5>jL 5-AH-H81變Y^-H /-AAWAVAUATUHSHH(HU L5&6 H$LfHD$Lt$HOI=I#IMH,H ,HOAL +Hz,ELOODHHr4 Hu0ATH5RH81؉X,ZH O,%H=~ E1!H(L[]A\A]A^A_@LLMHHHsH=5 AHEHAVj5 5U j5} Pj5D  IHEHPMHHEvHiHV(HE nLIIIMXIHFHH$ΊIMrL $HD$HT$IHF(HHD$HF HD$HFH$|IM~HL.LLH5K y,yf.HHEtFH *n,H=9 ^@H *AL l*H踍fDHF HHD$HFH$ljIMH5t LHVH+HD$IH舉H5y LIHVI辌H$HLe'H5q LHV荌HyHD$IbfDAUIATUSHH(H H H. LffHnfHnflHD$)$MIMIHe2 ILNLHH=2 HsI$L PjAPQLj5 RLjAPA II$HPMHI$t1H(L[]A\A]IujLV(H1 HV lfDL؋H(L[]A\A]f.H1 II8fDH1 HV IDH V(AHH(0 H,H5 ATL (H81臅X+ZH 'cH=UE1H(L[]A\A]IM?IHFLH$HH~TH56 LHVRHtHD$HH~.H5 LHV,H<HD$HH*L $HT$LT$H H]0 MH *'H,'MHII?IAIHF(LHD$HF HD$HFH$DHr@HI$t&H &.+H=1@LЉfDLHH#H5 LHV!HH$HHF LHD$HFH$蟅HHL*LLH5F *fAVAUATUSHHL * H-. LfL $Hl$HMI;I!MMH%MH %H)HIHHf- I?ATIH5FH8L <%A1XZH 8%H=E1HL[]A\A]A^ILHHsH_ H=- AI$Hv LUjRPjRLPj5_  II$HPMHI$xL߇HL[]A\A]A^LV LNfIIIIt]MH較IHL $LT$fHI$H $H=oFH)$_H~HL(LLH53C yqvHFHH$ IMdH5Ͱ LHVQHtHD$IF뒐L踆QH5 LHVHtH$Iff.AWAVAUATUHSHH(L5M, LnH$HD$Lt$HrIHIHV(HE LMHHHsH=L, AHEHAVj5D 5 j5n Pj5 o IHEHPMHHEH(L[]A\A]A^A_HȁH5ٷ LIHVIH$HLmDIH !"H#"AHMEIHH) H"H5AUL !H81JXZH !jH=xE1H>LH؄II[qMIHFHH$΀IH5$ LHVHD$H3IML $HD$HT$8f.IHF(HHD$HF HD$HFH$TIM~HL!LLH5@ yfHHEt&H #H=F@H踃fDH v AXfDH5 LHVH`HD$IMfDHF HHD$HFH$IHH' H H5jL AH H81>}Y^H AATIUHHGH5K HHHHHEH5: LHHHЉHEHHEx(HtHd( HH]A\HhfDHt&H H=H1]A\@H(ː|HHR뫐 \@UHHGH5P HHHHHEH5? HHHHMHQHUHt1Ht H]fDHHD$sHD$H]HtVH H=H1]fD{HH]뻐{dfDH뛐AVAUATUHHHGH5ϱ HHoIMrID$H5 LHHII$HI$MxH_HEH5ܱ HHHHH{HEH58 HHHIHEHMHEHID$H5 LHHHI$HHI$HH=) H}IH}HmH5 L|HHI,$HLyIHEHmImIMHPIIHt2HL]A\A]A^H LLHL]A\A]A^ÐL~H~1XI,$uL~H jME1H=IEHML~Lp~H`~xIMH >H=/zHL]A\A]A^xIvHH @E1H=/f.AMf.DME1H `H=IEHPf xH/AOHmuHk}fwI+wH]RkfDAUA[L}AWAVIAUATUSHHGH5T HHHHH}H;=S" H]HLeHI$HmI|$L=" L9tLy?IT$B/Hj Ml$H=RvLHIJyMH+I,$H= H5~ HGHHRIMTH H{L9tLxHSB Hj H[H=6u LHIxMpI|$H;= I\$HM|$HII,$8LHLZH+H-I.HI/CHLUxIIEMHIEHmHL[]A\A]A^A_f.HzLHEIHfImAu LkzMt I,${H DE1H=r lHLH+IMLHm|HAyf.L=1 L9tLvHUBLb ALmH=>su1LAIvMII,$bLfyUL9t;Lcvu/LLMI.H!@L(yIT$BtHZ Il$H=s?HLHuHIMHItI/LxHEL-U LMH=.r|1LHAIuMsHRH H5 H8qy7@H0xMfHxGLx,LwHwLwx1,f;rHHABDrIIEAHIEE1H+NHLKwAfDE1HIE:AHmH w@qHrHc H5H8 xWkqHuH7 H5xH8wI.t"IEAHIE'DM1NA1ffpAH0pHH H5H8LwH+ DMVL1HI`uILuff.ATL%W UH-w SHEHHtnH=Gouv1HLHrHtgHA)Hmt"DH ;H=,[1]A\HHufDH1LtHHuAoHuH H5H80vff.ATL% UH- SHEHHtnH=gnuv1HLHqHtgHAlIHmt"DH [H=[1]A\HhtfDH1LsHHuAhnHuH H5H8Puff.ATL% UH- SHEHHtnH=muv1HLHpHtgHAOiHmt"DH {H=[1]A\HsfDH1LrHHuAKmHuH H5H8ptff.ATL%ט UH-ר SHEHHtnH=muv1HLH pHtgHAHmt"DH H=,[1]A\HrfDH1LrHHuAmHuH H5(H8sff.ATL%' UH- SHEHHtnH=2luv1HLH,oHtgHA,rHmt"DH H=|'[1]A\HqfDH1L#qHHuA(r;lHuH H5HH8rff.ATL%O UH- SHEHHtnH=Rkuv1HLHLnHtgHAqHmt"DH H=G[1]A\HpfDH1LCpHHuAq[kHuH' H5hH8qff.AWAVAUATUSH(HH57 HGHH#HH-H}H;= <L}M/LmIIEHmWI}H5l H9t mJIUB;HZ ImH=|iLHIlMI/ImID$H; IT$HMl$M|$ Mt$(IEIII,$OqHHH HHH HEHH= IHHm_ID$H-K LHHHHHH;eI,$*IGH;G 2H; LH@hH?H@H21LHHnHLHhIELh HD$nHT$HI_fHnfHnHfl@ILp(ImI/I.fHt H+YH(L[]A\A]A^A_HmLL]I/IMImE1AE11Lt$LD$_mLD$t$fME1LBmMtI/uL/mM6I.,LmH5Y H9t jHUBt|HZ LeH=mf1LIiMIImLlDHlLplHEL% HH-H=Qf91LHIGiMvfDfIH+E1E1AILIm{MI,$WE11E1E1fLkMf.HkLkIGH; IGH(HEfDHXkIoHEfeHH1E1E1E13ME1HtHmt>MtI(t[H H=0MI,$|E1@Ht$LD$T$jt$LD$T$@Lljt$T$jt$T$fDH;  LcgHH`I,$HCHHIHwHIHHIHHHdH"H+HiHfHx.HH^H HEH H5H81cLJ1E1E1E1Hmt 1eDHt$1T$^iT$t$A1ۺ/E1\1۾f16fcH+H  H8cu=LIT$HID$L(LxLpC@H HH5LH81bsLt$E11LD$E1E1dhLD$t$G1YiIH5HLaI,$HLhAE1E1E1DfHվ;fDI/trLAE1E1E1@3bIHQI/tAE1E1LArfDH H55H81{afDL8gL(gL1HIfIh1LE1E1E1dYHM H5H8gE1AE1E1H+tbHaHIH4LH H5{HEH H81`MvE11`E1AHCfMAH H5H8PgI/E1LA H(tnHa H5MLH81 `IؾnH H8Q`t5fH H84`.eHeIMLnyE11v{E11۾AE1E1Y1E1E10f.ATIUHHGH5 HHHHID$t_HELHHHtOHMHQHUHtFHtH]A\fHHD$dHD$H]A\fDLH_1qHtFH BH=H1]A\@/qf^H-H(d1q뫐AWfAVAUATUHSH8LnHD$ )D$HIHF(oNLnH~ HD$ )L$HG! LgID$HHXHcHDg@LLt$ cHH H= HdÅFHmH= H5 HGHHqHH H}H;= "L}MLeII$Hm LLLI/IMI,$L;5 t2IFH;  LL) HH=H(IULIUH/H8[]A\A]A^A_Hx^H5I LHHVHaHD$HrLm@HH HH5AUL AH H81\XGZH H=1H8[]A\A]A^A_HaUcHHx Hs HHHe HEHH= 1IHtHmIEL5. LHLHHHH}wIm\L`IHH=i HXIHImBHEH}H;=J H5 H9]LHI1II.M*fDIm H !H=6DgGII DDgGII IIuZHiI[DgAMc@H_L__3fDHUBHZ }LeH=YLLI}\MIIHIqImLAػI,$H DH=WRHm7H^1*H51 H9t$[uLHImIDHUBtHZ ILeH=.XpLLII[MYAǝAHGH H5H8e_,LHD$#^HD$H8[]A\A]A^A_L^MWIfDIIM|IHFHHD$YHH5ψ LHV]HD$HHH5 LHV\HD$ HHHLl$H|$@I&HF(HHD$ HF HD$HFHD$KYHfDAmAHmuH\H DDH=1,1DL\OH\r+WHL\H\|Lx\Lh\FLX\E1 H H=xsIEHP1LAǝAHF HHD$HFHD$XHUfDA~AbVHuH. H5oH8\I.I.Lt$[t$fHy H8UImt*H H=1pfDL [fDUHE1ADL}M-LmIIEHmTLLLI/I(LZH@`H,HHHHH@H# H9f. LeID$HHHcHDeEII IHmHYDeAMc@DeEII Hm?DDeHH5 HHH@FHSIwBHT$LLLH5C 8tHHH H5jL AHH81CSY^4/HHHH5uHH81 SߝHLH5H81RZHHXAH5;jL 2H kH8H1R_.AXHeXRHUHH5H8lY:H@`H`HHPHIH?H9XIFMfID$HHHcHEfAMcI.LWEfAFII IEfAFII EfH5HХIHeHm\HQWO@L@QIwH@`HHHt~LIHtqH9Xu"LI/I6LV)H5H;IHuI eQHXHeH5EH8W=H@^fDHHD$kTHD$H\NwNHHdH@`H HHHHHHH9GuzHGHGHPHw|H HcHGHH/HD$SHD$GWHH HЋGWHH GH5ܡHHnHH|$]MH|$H|$|H|$vHH5H8\TMHuHH5H87TDAW1AVAUATI1USHHHH=!| HD$HD$HD$ HD$(HD$0HD$8FHD$HHHs`LQHD$IHHt$ H|$HT$(RHEH5z HHHILt$0MH{pROIHHD$0H H9HLxMH@IHH|$0HD$0H/#9RHD$8H+LxLtI$Lt$8Ll$0MdIELMH=K1LLAIyNMLl$H|$8H/ HD$8H|$0H/H{pLl$HD$0HD$KHZIEMHT$(Ht$ H|$LHmI,$t,Mt ImHHL[]A\A]A^A_f.LPfDD$|H|$Ht H/4HD$H|$0Ht H/'HD$0Mt I.Mt I/ H|$8Ht H/H\$8L|$0HD$8Lt$LHLMHEH5 HHHIMZH|$L9tImD$ LOHT$8Ht$0H|$ LD$ HD$HD$0HD$8AE1H|$HT$(Ht$ iKH|$HH/IH|$0Ht H/"H|$8Ht H/t$H DH=iH5AH8JD$}GLBD$ (tMUM1DI;|HI9uE1ɐKTHBtB@t9H9HXHtNHqH~1DH;TYHH9uIM9u*HD$AD$|HHH9 HuH;uD$|E1IoD$ HHHtHHt&HÐkHu𾤏f.H H=1Hff.AW1AVAιAUATIUSHHH|$@HT$HHLD$(DL$4HD$ EOHIAHAHAHAHAtsHAt_HAtKHAt7HA t# HÐHA9@McLL|$8PGHHtxJE1H$JD-IL;,$EJ|+GIHuHmf1fDHH5RH81@ffoL$PfoT$`LA$fo$fo\$pfo$AL$fo$fo$AT$ fo$fo$A\$0fo$Ad$@fo$Al$Pfo$At$`A|$pA$A$A$A$A$H[]A\A]A^A_IcHHD$8EHH @HD$ H|$(LxpeFH$HLpBIHbH|$ @HH H|$1;L$1LLAIAMImI?H$PLt$4HIHIH%E~pHT$8H$HfFAVMIuxMEH|$PLD$HHNH$%FLD$H$H$L FIUHIE@fHnfInDDfl)D$@)$$$$$$$$$$$$$$$$$$$$$$$$$$$sxspshs`sXsPsHs@s8s0s(s sss3$HĠfo$x.Hmt=I/L)$"Bfo$Imt1HmfufH)$Afo$MuLAfDNfD>4LAELA.LD$H>#ff.UHHpHEHDUlDHwxH,$IHHD$HAE#HbH$H9L9AD H9L9AD !AR„&HD$H)HxH=o6D)t$o9)|$Po)$tpov)t$ oy)|$`ow)$tJo~ )|$0oA )D$poO )$t$of0)d$@oi0)$oW0)$DЃAt"HH4HtH HLPHHĐLE`DLH$HHAXP7ZYHKfo$Hfo$H$fo$fo$fo$fo$)$fo$)$fo$fo$ )$fo$0fo$@)$fo$P)$fo$`)$ )$0)$@)$P)$`)$p)$)$؄HUHp]fH$H9L9 AR„@HD$H)HxH=(oDfv)T$o)$)\$Ptao^)\$ oa)$)d$`t@on )l$0oy )$)|$ptoN0)L$@oi0)$)$DЃAHH4HtHHDŽĐHTPHHD$HHD$PHH$AHFHD$HAHD$XHGH$AkHFHD$ HAHD$`HGH$ACHFHD$(HAHD$hHGH$AHF HD$0HA HD$pHG H$AHF(HD$8HA(HD$xHG(H$AHF0HD$@HA0H$HG0H$AHF8HD$HHA8H$HG8H$zf̈́H H=Hp1]HHD$HHDŽ$HD$PA*HFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AHFHD$(HAHDŽ$HD$hAHF HD$0HA HDŽ$HD$pAHF(HD$8HA(HDŽ$HD$xAbHF0HD$@HA0HDŽ$H$A7HF8HD$HHA8HDŽ$H$fff.ATUHHHEHDUlDHwxH,$IHHD$HAE#HHH$H9L9AD H9L9AD !AR„HD$H)HxH=o6D)t$o9)|$Po)$tpov)t$ oy)|$`ow)$tJo~ )|$0oA )D$poO )$t$of0)d$@oi0)$oW0)$DЃAt"HH4HtH HLPHHĐLE`DLH$HHA8Pd1ZYH9fo$LHfo$fo$fo$fo$) $fo$ fo$0)T$fo$@fo$P)\$ fo$`fo$p)d$0fo$)l$@fo$)t$P)|$`)D$p)$)$)$)$)$yHaHĨ]A\@H$H9L9 AR„JHD$H)HxH=2oDfv)T$o)$)\$Ptao^)\$ oa)$)d$`t@on )l$0oy )$)|$ptoN0)L$@oi0)$)$DЃAHH4HtHHDŽĐHTPHHD$HHD$PHH$AHFHD$HAHD$XHGH$A}HFHD$ HAHD$`HGH$AUHFHD$(HAHD$hHGH$A-HF HD$0HA HD$pHG H$AHF(HD$8HA(HD$xHG(H$AHF0HD$@HA0H$HG0H$AHF8HD$HHA8H$HG8H$fn~H BH=غHĨ1]A\HHD$HHDŽ$HD$PA:HFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AHFHD$(HAHDŽ$HD$hAHF HD$0HA HDŽ$HD$pAHF(HD$8HA(HDŽ$HD$xArHF0HD$@HA0HDŽ$H$AGHF8HD$HHA8HDŽ$H$!ff.AWIAVAUATIUSH(HFH;ALwHt H;lkI1HD$E11H|$fDIGH55I9wH9IGH,HHEHt H+H#H9EHEHPHwH]HAD$lIt$`HID$XHHHHHyI|$xJH9&HIIHIIH|$HHL$HD$LHL$HH*+HtHH2H9*0I/HLX0I$ID$xI$J4JHH(Jf.MII/w?Lt$T$/T$t$"fDH]EHH fHHrHL$9*HHL$HNHHL$k/HL$HH9EHHL$1HL$HHtHL$HD$+H|$HL$HH/hHL$ /HL$TH9IlHHEk@HfHHL$+HL$H@L/IHH=a HE&IH+I,$L%c H5I|$H9t q+IT$BHZ 2Md$H=є<(LLI4+MTImLAA蝊I,$fDH H=wI/H H=E1Ht HmH(L[]A\A]A^A_@1@]EHH -A9I,$hL@-[HQAH5H8G.2fL.IHyH= ` H$IHnI,$fL%Gb H5 I|$H9t.)u%LLZIHu\A fIT$BtHZ Md$H= w&LLIo)MIm#LA؈I,$=HHHHAH5H8 -DH+5L+5LLUIHA<ImL{+fDLh+H[(IHtwH@HHD$HHofDL +L+E1w6A7E1iH wE1H= )R%A<HHH5PH8+AA $A HHP@HVH@HXHt1HJH~1H;trHH9uHݾw HH9GHuH;55Dw1A<A Hg"tLVMj1H;DHI9uE1JLHQt=@t4H9HXHt-L_M~1H;LtHI9uIM9uHHH9JHuH; u7fAWAVAUATUSHH(HIHCHHCH5X IEHFHCHHHIM4L5 M9K(HHNI$HLL`b"IHHm{ImH_ HK H9B(HK HXHL-K M'HHHCHHCHEH"O HLu(HE I'IHAfInfHnfl@ILx(I/Mt I,$]HL[]A\A]A^A_HH8y!,<'L5IH^ LcHBM9H;J DH}J H\HHiJ H$H<$&HHHCHHCHEHN HHE IELm(&IHV~$fHnfl@ImML&Hm $tImMtI.tK4$H E1H=L%$=tIMfDL%fDHI3HX%ImH] }L>%H\ ifL(%E$sE1HEMHHEE1H$MH sE1H=sH zH=ЬME1iH=O HjH H5kH IfDH=aO H2H H53H H$DH=[ L52O HGLHHH$H<$H3LH5H81H ;tH=ImE1$ t H $HHD$HHH K=tH=貵ImuE1BH= [ H-BN HGHHHIMHFH H5+H81-$ t$tE1 @L4$$HtME1sMMIh H$kAWAVAUATUHSHHF LvIFHHuHcH@AfHEH5P HHH2IM$HHL"IHH5K HH$I,$H{Y H l> H9HHS> HjHL%?> M.ID$H5:J LHHIMI,$H5_Q LH#ImIGL%~H HHH= HLLIMI/HmIEH5nR LHHCHH%ImzH}HH9VL}MILmIIEHmH"I LLoI/I"M ImID$H5I LHHHI$HI$HHH}H9L}MLmIIEHmI}H5H9t IUBHZ ImH=rzLHIjMI/ImID$HXpHjH{_L HHgH=HHiHmI[M>LLSI.II$HPMI$HHL[]A\A]A^A_@DvLMfHLIII8DvFII DvFII IIuAIHH ̺YE1H=[N[fDvAMc@LL腚I/IhMf.HPHUH5H81I$HI$AH %DE1H=謯HAf.L(iH5qL%E H9t tdHUBtYLj L}H=u+LLAIIMWHALHIBIXf.LAmLX LHH5H9t ?tKHUBt@HZ $LeH=uv1LIMtTI@HEL%S HH%H=^u+1LHIMufD3HAHm8E1E1fDH`HSI L@L0HmdHWLyLAi[IHrLAE1I/t|Hm)MtI,$t%MImLi@LXfDI/uLBAfL(LwLE1AKDHLLJIHfH LAE1仦DH=E H26 H536 IfDLXE1ADL0oH=P L-E HGLHHIMwHL껧H5E1AH81%;IYAL1HIIHxAHAE1仦E1f.IHE1Aj@HE1E1I/t@LHf1[f[HuH'H5h~H8I/uLLf.H@`H[HHKHIH:H@H;zMuIFHH^HcHEuIm}L@ImALE1KEuAMcImt밐EuAEII I@EuAEII xLH5dIH0H@ LXILI@HAH5|H8MvHHH5H8$H`H5|H8 &HEH5|H8/H@`H HHLHHHDH9GuzHGLwIFHHHcHDwAMcH/y2oDwGII IDwGII DwH5XcHHnImL@H|$H|$IxH|$ߤH|$Ia=HuHAH5!H8AWAVAUATUH0L-TLfLl$(HBMILfH5tE HFSID$LHH[HHH/ID$H5/E LHHHH H5oHOHmAqH-J E]H}H5H9LH%IH@MH#H HILHyH?L ֯MLIL@HHзATHH5H816 XfZH H=E14H0L]A\A]A^A_HUBALj uHmH=Jy u$LHAIMu& HPfH H=2E1誤qDH-H ID$H9t*HXHt.HJH~E1 HH9t7H;luI$"fDHH9tHuH;-tfDHI H 5 H9HH5 HHL-5 MI}H;=1KL5L9tgLu[LLMHHeL5M}DMH8++fDIUBtHj AM}H=w LLHHImL%6G I|$L9t L t`IT$BtTLj Md$H=,w uKLHAI MiHmzHVmLHIHuDHmVgfDHMIHFHHD$(! HvLd$(fDHH5H8HT$(Ht$ H|$ HD$HtHHD$ HtHHT$(Ht HHT$(Ht$ H|$ H=HT$(Ht$ H|$I MZL I.H-E LH-E HZMI/VfxLT$ t$t$T$ [L3 HH=A H2 H52 1IHVgHT$(LHLH5 hdfCf1fHX IH4H5U8 HHV HtHD$(IFfDkH LX H-AD @E1E1%Vf9H=bE L5@ HGLHHIMHLH5H81Vf@MuMM}IIImtQLLLJI.HL HHcH5sH8 L H>H5sH8 5-I&HH5WsH8 f.AWAVIAUATUSH(HF~HFHHHHcH@1fD1)IHI~H55 HGHHHHHc IH$H}H;=i{LEMnH]IHHm/LLHL$őL$II($I,$MHH+VIGH;t H;HD$ILH$IH)E1H|$HEHH9UH $H9HEL$HH $I$Mt I)IFHI^H{H;=UH5H9LH?HIHMDH+SIEI;E [IIUL*A\ILpHH˛H5 ^H8tA\AA*I.LDLLH=. L=R# HGLHHIMHLH5АA^Ah*H81*A^Ao*SH=" HB H5C IfDAQ*A]A^Ah*IA^Aj*HF HHD$HFHD$IfDHIHH5 HHV)HHD$IfAm*A^H=( H9HEt H;}HIHL%* I|$H;=tmH5v)u]LLqIHwI/LAaA*QI.oA_A}*IT$BtHZ Md$H=4[LLIMp A*AaHHŘH5[H8nfHT$LHLH57 Mm){ILaIE16HIIHAaA*EH Za*E1H=|܅ZA*AafDAWAVAUATIUSH8H@L5 LnH\$Lt$H\$ HI MI?IHFH$L `* IyH;=Mt[H5DLL$LL$uALL~oHHurfDH nb+E1H={iIQBtHj MyH=YuLLH}HH* H 6 H9HH HHL=  MIGH5! LHHbIIHM5IH)LHIHuI.sL;=L;=Җu I9DI/tEM$It$H$MH=IL( IHI/ HmH8L[]A\A]A^A_ILn(Lv fH$I@H( H H9HPH HHL5 MlIFH59 LHHfIIHMaIHLHEIHI//L;5L;5n3I9*LADžwI.E|M$It$H$MH=IL& IHI.L|fLL8AƅA>AcI/DDE1H H=x諁HmHHL8L(Lv I@LDE1kL\MH HMHII?IAHHUHHH57_AUL .H81X ZH ++H=wE1貀+DH AfHI+MDIGHFHHD$9IM~TH5 HHVnHtHD$IM~.H5 HHVHHHD$ IMmHD$Lt$Ll$ H$DI.HF(HHD$ HF HD$HFHD$IfDH= H2 H53 ~IfDAcA7H=$ L5z HGLHHIMHLH5AcA7H81BfA9AcILHHېH5SH8AcA<I.L*DLLH=# L=b HGLHHIMHLH5AeAcH81*AeAjSH= HR H5S }IfDALAdAeAcIAeAeHF HHD$HFHD$IfDHIHH5 HHV9HHD$IfAhAeH=1 H9HEt H;}HIHL% I|$H;=tmH59u]LLfIHwI/LAhAFI.oAfAxIT$BtHZ Md$H=DPLLIMpAAhHHՍH5PH8~fHT$LHL؉H5 BmILqIE16HYIHAhAEH jhE1H=qzZAAhfDAWAVAUATIUHSHHHML= HD$ LvH\$(L|$0H\$8HI_II_I)IHE HD$HEHD$L Y IyH;=Ft\H5=LL$LL$uBLLwdHHusH f+E1H=%qyIQBtHj MqH=NyuLLHuHtH  H N H9HH5 HHL5! MIFH5 LHHIIHMIHqLHIH I/L;5L;5ʋu I9:DI.EH HM$It$H=AIH LAUjRPjRPj5N LL$`HT$X IHPHI.$HmHHL[]A\A]A^A_IVLn0L}(fH\$IHq H  H9H@H H(HL=u MDIGH5 LHHVIIHM)IHMLHIH)I.L;=XL;=.CI9:LAƅOI/]EM$It$H= ILL  AUjLD$ HT$ Y^IHPI/rLnefLXLADžA+AI.DDE1H ̀H=m[vHmHL8LL}(I@L7DE1#L\IIHJcHHF0HD$8HE(HD$0HE LHD$(HEHD$ dIIhI~aIu&M~nH5 LHVHtHD$8IM~HHT$ LLLH57 1E1H sH=x^jImALL$L$!fDLL$L$HL$L$L߉$$wMLAIE1HI9fLωT$L$PT$L$LT$L$0L$T$H|$ L $L $H8Lt$(I)IIL $HI<1M~*H) HIPH  H HI9uLHLL$L$L$LL$HH H( I(D$$G@AAGHH HAGAwHH H)o@HL $L $uL뺯Ll$ E1AӆLH= Ll$ H;={HsHFt H;zL $]L $IML5N H5{I~H9tL\$L $L $L\$INAHIHL$ MvH=;L\$L $>L $L\$LL$LLHD$L$IML$LL$I+LL $1I.L $yA E1wfDLLLL$L$LQL$LL$HIuA<Ll$ I,$I/HEHKLc|$I)$XLL$;L$HIHLL$L$L$LL$HIA[L$LL$HIIfInfInLMfl@IEHIELLL$D$LL$$ef.LD$L $bLD$L $@LA BL $E1LL $$L $8LIHiH@HHD$HkHTH(xHIL뺬Ll$ E1ArAXGILLT$LT$!LLT$rLT$LT$IIULT$HI1M~(DH HIQH H HI9uLHLT$LL$`LL$LT$HIRH( I)LLT$LT$}E1tL $.L $ILILl$ AHA8LMLl$ AL\$AL $L $L\$HHuH57T$H8GL $L\$T$GH lH=qL$M1cL$LHLL$LT$LL$LT$ME1LA\ME11E1AbAMAd1E1^[OIC?A@1HFH@IXHt;HJH~1H;t9HH9uE1MLMAML9MuH;5}tDME1LAd@t~H^H~1L;\HH9u1HTHBt=@t4I9IXHtLLGM~1H;TdHI9uHH9uLLT$LT$3LHH9HuH;suDAWAVAUIATUSHHHGhI<wlLIvHHH;KtHPHLpHX IHH(I,$H-SsL;5lsAI9DL;5sLAąyyAE1A$yfDH iDDL $H=W `L $I.AGMfDH++HD[]A\A]A^A_@EIEE7LLPIHH;rI9JL; s=LL $L $IUHRp(HHBHL $HLL $HHIEL $LHLPL $IHEMHHEI,$IE1HII)LmH+H[fDHHI,$L5LHLP IHH(I.lL_IUHRpHHBHL $HLL $HHH;-qIEL $LHLPL $HIHEHhULL $TL $H- L- HEHH)H=1*21HLH HzH'Hmx:H fH=TLA]!fx@HIoH5RTAyH8HmH EfDLH=HTA\~AyHxHHfH ieHEHnH5PH81EHL $bLL $L $QHZH1nH55AyH81$Ht$ $$t$ DAA.yAAyyAA:ygHLL $yTL $HiDHLL $YTL $H!H1L`HH@xAADyAA]yH HFH}H9HXHRHqH~1H;THH9uHlHJL $H5F4HWA_yH81RL $fDHmA/HL $L $fHHEHL $H cFyH=Q ZL $A`yHGH5->AHPHmH81HHkH5!.H8xpHkL $H5aA_yH8ZL $ HHH9pHuH;k^L $ff.AWAVAUATUSHHHlL%\ L- LvH|$H\$ Ld$(Ll$0H\$8HIHBtJcHDH\$Ln(Lf HFHD$L= IH;=l"H5lNLLBHHMH H ! H9H' H H HL5 M; IFH5` LHHu IIHM@ IHtLHtIH I/nL;5jL;5jI9LAą I.EH H % H9H H H HL5 M IFH5| LHHa IIHM4 IH@LHIH4 I/L;5iL;5iI9LAą I.E L%p M9HhiI9EI9D$yqA}  A|$  IMI;L$\IEIT$H9@H@t H6EE A|$ D8A  MmH@  It$HЃ ? AU>9HtLH,@HD$LD$HT$H=iLHpIL IHG I.LH\$H\$wfH\$[fDH\$GfDHF0HD$/fI9/'HD$LD$HT$H=ygLHpIL IH I/ HmHHL[]A\A]A^A_IWBHj ]MwH=( u'LLH H{H H ^DE1H=KTpDI.D^LEVL% M9HfI9EI9D$A} A|$  IUI;T$IEIL$H9@H@t HEE A|$ D8A 7 MmH@  It$HȃO  AM>9HtLHnvfDHD$LD$HT$H=fLHpIL IH@AoADL(HLMH\MH \H`HIHHdI?AVIH5i0H8L _\A1X$ZH [\H=IE1QPDI9uuoI9uufLLFIHH;dL;-ydNI9ELͷIm>HD$LD$HT$H= dLHpIL IHAADD]E1IHH\lJcHHF0HD$8HF(HD$0HF HHD$(HFHD$ 脺III~aIu*M~.H5 HHV製HlHD$8IMZHD$ Ld$(Ll$0HD$HD$8HD$DMbIuM~H5 HHV9HtHD$(IM~H5 HHVHTHD$0IA@LpI9uLL+IHH;bL;-^bI9 L貵ImaLQH=I H H5 fNIfDL谼[AAP@DDE1H =YH=FN/ARAI.uLV@˶IH= L% HGLHHIM*H6bLH5 VAAPH81IAAUI/2L»%DAWACHFHHD$ 迷I@H訷IMdH5U HHVٺHHD$ IqfL8H= H H5 LIfDAA_H= L%R HGLHHKIMH`LH5TAAH81ƴAAIAAAAH= H9HEt H;L_H趱IHL% I|$H;=?`tUH56`uELLz6IHI.LA A PI/IT$BtHZ Md$H= wnLLIoMuAA HH]H5H8JDImLDImLڸDA AAAJHT$ LHLyYH5t @ LFhAAL%SLAAb襲ILH|\H5H8%L/IT$0It$H@HEIIU0IHA@LE%IL$0It$H@HEIM0IHA@LEAU>IE1AM>H֮IHPA AfAU>AM>kH S E1H= AFIAA |AWAVIAUATUHSH8'10IMH\H- fID$P)D$ID$I\$I\$ I\$(LmHHD$ MIIIH SHSAHMEIHHZHWH5&AUL RH81+XEuZH QZH=)@,HI,$E1:fHE(HD$ oMH} Lm)L$HG_HGHHH_cHcHfE1DH|$ H H;=ZH;=yZVH9MЭŃIEI|$H/@Ml$H] E$I9D$tI9t%It$HDLѯI|$PdAA$LIT$u4LBHE LHD$HEHD$&IfDH NAfDH M^uH=<DfDH5 LHVHHD$ IfDL蠭H5q LIHVIְHD$H;LmVH5H8oHmH,EUHH HcAH9LfHH5OQHHH@HԩHcAH9 HfVHXiHHETH RLH5' jL LAHcPH81藩Y^%ugHHSH5JH8gH@`HHHHIHwL9pIGIGHHH\HcHE1I/L貮EwAAGAWHH HHcAH9tHpTH5AH8蝯AGAWHH HcAH9tEwH5dMHIH4L!HcAH9NHu觨HwA1H@`HHHtxLHHtkL9pu&H|$o7H|$AH/設H5LHHu(H@H(RH5IH8虮%HXHQH5HH8p=H IAfH7Ht(H HǀHPHRHHxHDAWAVAUATUSHXL- L5 HNLfH|$fInfInflHD$@)D$0HI MILHQRHD$LnH1 H(hE111HALIH H8H H(hE111HALHH H8(EA;D$H H | H9H Hc Hb HL=O M IGH5 LHH8HIHH IHHPH9C褫IHhE1E1 A)E1Ht H+=Mt I/Mt I(OH GDH=F5!=MtI,$E1Ht HmMt ImMt I.HXL[]A\A]A^A_DI>HF(Lv HD$@HP/vLhf.`D$ LLf.D \D$H H D$ H9H: H HJHL= MIGH5K LHHXHIHH3IH D$ 輣IHH{H;=NwH5OH9t ^HSBLj 3LsH=+LLAI"M I/H+ L;-.NL;-Nu L;-N Im H\$D$LIϢIHD$ HD$賢LL$HI2H HL56NjHAPH=NH5Q j59 AUjPHT$XLL$` HPLL$HHI/ I)k Im@ E1E1I,$HmIH蹧@H訧EA;D$MDHqMHD$LH$HII/Ht.MfE1E1A((E1DL(fD1LHT$HT$IF@LdLEHLLv HD$gH߉T$LD$DT$貦T$LD$DT$LljT$DT$臦T$DT$fLT$LD$DT$ZT$LD$DT$QL8H BAHHJH GH5ATL BH81'X(ZH BH=M0E1%8AHI# M IHFHHD$0ɡIM~TH5 HHVHtHD$8IM~.H5T HHVؤHSHD$@IMAHD$@Ll$0Lt$8HD$MH AHAMHII?IA@IHF(HHD$@HF HD$8HFHD$0IfDIٺ1HEIlI$MdIALM~H=' LL$荞LL$1LLAI}MLL$I/I)H IL0IHKH8H H H9HH HHH HHCH5 HHHgIMAH+H` H 1 H9Hg H H7 HL  M IALL$LH5 HH LL$HH] I)SH{H;=H H5cIH9t HSBHJHL$ LCH=n LD$ Ԝ LD$ LHD$LHD$LL$M H+IH;=H H5HH9tLL$qLL$tIWBeHZ IMGH=LL$LD$ /LL$bLD$ LLHHLL$I)]I/H;$GH;Fu H;GfDH+E? HL$HMAH=NGHHqHH H5OGjP5~ j5f AUjPHT$X HHPH H+RHHD$HT$;DLHHIHMaA])SLLLL$LL$LHI)I0HE1Am) @LLL$苠LL$T$DT$觘DT$T$"f LL$HHfDE1E1A(KfLCMAHKIHH+LHLLD$ HL$ULD$ HL$II(LHL$ LL$HL$ LL$DLsM|HKIHH+bHLLHL$(I.HL$(I9LHL$(蓗HL$("fMGMIOIHI/LLHLL$(LD$ HL$pLD$ HL$LL$(HI(_LHL$ LL$HL$ LL$>A])E1]DL- L5ҽ IEHHH=_ʐL1LLHHH?H+FE1E1E1A(1Sf.L= H5B IGHHcH=Ht$=1Ht$LH1HHH+A)E11LL$vLL$A])H-H.:H5oT$LL$H8DT$ɖDT$LL$T$fD1E1E1A(E1A)6DHLL$;LL$-1E1A(LLME1E1A(=HT$0LHL5H5Q 'L1”Am)E1HHL$ LD$蝔LD$HL$ QLHL$(LD$ LL$wLL$LD$ HL$(HHL$(VHL$(ǎI)H7HE11%A)H8H51H8-LL$A ) XcH51LAHHE1A|)1LLHHE1E1E1A(iI IPE1E1E1A(14A|)E11эIH`H7H5H8?A|)蓍IHNHX7H5E1E1H8A(LM A)(IE1LAWAVAUIATUHSHhW10IMH H58HD$0HD$8IGH I_PI_XLeHHD$@HD$PHD$HMIIIIH.H .HMHATH2LDH]6H5FL ?.H81ŋZlY{H U-H=#I/ E1HhL[]A\A]A^A_HE8HD$PHE0HD$HHE(oMH} LmHD$@)L$0H6H9G HGHPHHGDwHHD$HH|$PHl$@HD$H|H;=6H;=5u H9‰D$IEH;5t I9f H9 HEI9 IEH9 AG0MwH MXHEH;5AHEIXH//IoXHE Ic0IG(HIcW0IG8HIW@H IEI}HPIU^1 fH)IG8IcH4I9U2MDAH c5HIHpI0I9H MXIsHiM0ApIIHuLHt$H$IHt$H$kHfDwGII II*讉HIf苇D$:yH,l|8HH5 HHpIMoIxH;=%4MPMMHIII(H LLLT$L $yLT$L $II*CM I)`Hm=ICH;3IIXLH/uIoXH9H2H5(HH8lnfDE1ApA@HH ƐHHtIHL$L$HI(IIcL$IHL$HD$L8LD$HIH$yL$LD$HIfInfInH=; Hfl@胄IHI,$ L%} H53I|$H9tL$諉L$oIT$B_HZ  Md$H=L$nL$JLLIbML$@I( LI,$ WmAE1E1ImLL$L$MfMt I+qMt I,$QH 'DH=NH*HmH荋LL$HT$L$HHLD$ H$!H<$LD$ HT$HH/LD$H$HD$ #Ht$ LD$H$IfILApAxHH L%y L-Ұ ID$HHH=V1LLI跇MqLAm+I,$LhLXD$IHLL$(L$H.H5 18If.IH7JcHHE8HD$PHE0HD$HHE(HD$@HE LHD$8HEHD$0хIIH7JcH@IEHIEH L%ܸ L9d$HL$L-.L9iM9l$„nfy _A|$ 3HD$HPI;T$$H@It$H9@H@t HHD$ED$ DH D@Dȃ@8HL$A HyHA It$HDAADDE9HtH7oH HIPH/ H IcO0LI@Iw8IGP1~HHHH9uDD$IW HH5 AGh踄IH H;-H;,I9L?AŃ I,$ D$EolHmHeHHAmHz1DD*LeDDLL$zxL$.A@It$HRIt$0HHL$A@HyH&Hy0DD=DD0E1L1L}wIHAn0IHHHHH5\L$AlH81qL$LHt$&oIIEHH5HH8xL$AmmAE1E1JqAnHw/MKHH5mAH8:xL$AWAVAUATIUHSHHH<$H9H$HEIHYI9Ht$ L#IHHEH5l HHHHHHEHEHH-H5$HcHE1DHmID$H5 LHHHHHEHEHHH5&$HcHDDu@AuEpHAiEuHH HcAH9tHaH5H8v붋EuHH HHcAH9tDuA@E1DHmH$DDAAAAAAAAAAAuxAupAuhAu`AuXAuPAuHAu@Au8Au0Au(Au AuAuAuAuAAAAAAAAAAAwxAwpAwhAw`AwXAwPAwHAw@Aw8Aw0Aw(Aw AwAwAwA7=JHĠHHH[]A\A]A^A_@De@AYnH@A}DDeAEuHH HcAH9tHaH5H8t뢋EuHH HHcAH9yH0sH sHmHcAH9THmHt=H1 HH}H9HXHHqH~1H;THH9uH5HJH5HWH81lzzfDH H=1PH.lHcAH9WHlHDfH Q HMD$L92IXH/H~H~1H;LHH9uIPHQH5HIH81kz-DzfkHzkH:zzHH5U H8*rzH\H50 H8rzvHHH9HuH;| fH@`HHHHIHH H@HL$H9 fI@HHH5HcHEp@I(NLoAI(ALoEpAA@ApHH HHcAH9tHLD$H5H8pLD$I(Lqo@A@ApHH HcAH9BLH5X葽IH{H@LLD$iLD$HcAH9HNiLD$H;VfzHmkH4$n4$SLHH9HuH; \fzfH@`HHHHIHH H@HL$H9 fcI@HHH5rHcHE`@I(LmI(ALm{E`AA@ApHH HHcAH9tH\LD$H5H8nLD$I(LAm~@A@ApHH HcAH9BLH5( aIH7H@LLD$fLD$HcAH9HN\gLD$H;Vf;gHH;H5H8mgHHH5H8mH@`HHHLD$LLD$HIHD$I9AIAIAHHH5yHcHE1I)LLD$kLD$EqAAAAqHH HHcAH9tLL$HnH5LD$H8AlLD$LL$AAAqHH HcAH9kf.EqVLH5? xLD$HIfLLD$LL$dLL$LD$HcAH9HALL$LD$\eLD$LL$HAH@`HXHHHLD$LLD$HI-HD$I9AIAJIAHHH5HcHE1I)ALLD$ jLD$*EaAAAAqHH HHcAH9tLL$HH5LD$H8AjLD$LL$AAAqHH HcAH9kEa`LH5ԷLD$HI LLD$LL$LcLL$LD$HcAH9HMLL$LD$cLD$LL$H+AH@`HHHLLD$LL$LL$LD$HHHD$H9GuNLL$LD$H|$MH|$LD$LL$AH/^LL$LD$rhLD$LL$@H5~LD$貶LD$LL$HHu4LD$bLD$HH H5H8=iLD$H@`HHHLLD$LL$LL$LD$HHHD$H9GuNLL$LD$H|$RH|$LD$LL$AH/LL$LD$wgLD$LL$H5LD$践LD$LL$HHuLD$aLD$HH H5H8BhLD$LL$LD$aLD$LL$H=H H5oaLL$LD$daLD$LL$HHZ H5:ff.AW1IAVAUIATUSHH$@HH=ޝ  H I}H9t:HXHHqH 1DHH9 H;TuL;- IIEA~HD$(MLl$ fInIGH;a fl)$@t H;  IE1HD$1H|$D$D$D$Ll$HIGH I9_ L9qIGN4IIHt Hm L=^ÅSL;5 IFH5 LHHx IMB L-3 M9L; u L; IHhI(H1IFH5 LHHd IMF M9L; .L;? !LLD$0\LD$0'  IHHD$8I>HD$8IFH5 LHH[ IM] M9L; L; LLD$0S\LD$0IHHD$0IHD$0IFH5 LHH] IM? ImQ IFH5 LHH IM I*+ IFLT$@LH5 HH LT$@IM I) HL$(HcD$L; HHHPLL@HL$@HD$0HH?HL;-m/ HL$@IhHL;K} IIH\$0LHHHT$@HHL9L@MyE1HcD$HĐLPLD$HcD$HD$L$MIȃD$L$@HI9F? IFHPH= HA^HHcD$HL$(HLHhPH@H9L$HcT$HHMxiT$H$HL(L$HHDH aHcD$HDŽPHHDŽĐHDŽL$D$H|$L^HD$LIHvLl$HQ[HHtHH0H9`I/HЖ IEH9t;HXH HqH 1fDHH9 H;TuH|$ HD$ AIHH$$$$$$$$$$$$$$$$$$$$$$$$$$$aHIHH;H HHpH9HXHHyH41 HH9#H;TuIff.LLD$0cWLD$0WAI/I(DH `E1H=H|$ tH\$ HHD$HHBMt I.#HL[]A\A]A^A_fDHI9@ I@HPH H AhHI(JL]=A^AFHH HHHcD$HL$(HLHhPH@H$HT$H= H5=0AABZDDH )H=EAVUHI9@ I@HPHi H AHHL$8HI(L\HvI9@U I@HPH9 H] AHHL$0HI(Ll\IMuHLl$pIuxIHD$ HIcElLt$x L$H\$pH$LHKf^H$LHS^Ht$ H$L>^H\$(fInHD$ fDT$H=- H5^i.AA'HH$H$L9OtIIDHI9HL$@IL;r M9 HT$@LAhA@HH HHLD$0ULD$0H HALWIHH@HHD$H IHqLHL$@HL;=o`IHT$@IM9fDL ZHZLZdLYLLT$@YLT$@M9PM9H11fT$H=m LL$hH5LT$`LD$XL\$PE,L\$PLD$XLT$`LL$hVHH *؊H=AAセRQDLLT$PLL$@YLT$PLL$@4Hl$@H$HM911H|$8HD$8I9LOI)L; HT$@WfDUAI/LXfDRIAulHH8uWH OH=HkARImAURHH\$(HcD$HHLHhPH@,fZH$LHZH$LNH\$(fIn@LZHHlH4THmHHNW|fHDHH9HuH;L;- HHH9HuH;HHJH5HWH81PH fH=E1TQIAHHKL$SHH\$8H|$8ULD$0PLD$0H<HD$8/AhPIH+H9HXHHqH1H;THH9uH\$0H|$0LD$0,PLD$0HNHD$0AOI-LD$8HLHH)MHHInOLT$@I;AtA^AFHH gI9HM9I)11HH9HuH;xA11I$$$$$$$$$$$$$$$$$$$$$$$$$$$HIHH;HH HIT$H9*HXHH~H1 HH9H;DuIf11LLD$0ULD$0HIHLD$@OImLD$@HD$0uLSLD$@cHD$8E1ƈAMLl$HIf.HcD$HL$(1HLHhPH@3HD$pfInHD$ HD$(LLD$0"ULD$0HHLD$8HD$02OH|$0LD$8HH/VLD$0ARLD$0BH#HAhA@HH 1LLD$0TLD$0HHLD$@HD$0NH|$0LD$@HD$8H/{LD$0QLD$0gLLQHHA@APHH HD$8LE1 HHEhA@II Ll$0HD$0LLD$0MLD$0HA_LLD$0MLD$0HD$8A@APHH HHD$8}H5H5 H8QLLD$@lMLD$@HD$0EhA@II ILl$0ȈAE1A HHE1IH5sH81YJ H H=\[AL#APqA,HG@HFH5@(HXHt2HJH~1H;tHH9uIAHH9HuH;5@AuH}HH5VMA H8PKHHH9HuH;HlHJMIHVH5A H81HIULLD$xNLD$CLFM1H;|HI9u1HDHHt=@t4H9LXMtVMQM~1I;DbHI9uHI9uvHRH5&M-AH8NHHH9HuH;quHHH9HuH;KIHHHRMIH-H5YAH81iG@H;5 AVAUATUHSHul pIHiHH9HPHLhLp IEIH(L;-L;-u I9HELHHHHEHP(IHImI.t%[L]A\A]A^ÐIH[L]A\A]A^DL0L[L]A\A]A^@LDlixH H=pE1@IEHIE{LKnHKLH%IH;txDDxH _E1H=HH5"[xH8LI,$uLFK@>LxHxHHH ZHEHH5H816E@HaLxH5ȶH81E@xfxAWAVAUATUHSHHXH}LnHD$0HD$8HD$@HII=HF(HD$Le HmH L(hLE11HA1AIHH87H؁ El$L(hHE11HA1AHHOH8=H=v EM LmMt$AEP o H=@u A0  Aj(A]\f(f^f.f(QYZ(H E1XYf/LHHsH=E1AILj5({ 5p j5t ATj5u UHT$XD HHPH$ I/ I,$HmIMImLdHHDH5au LIHVIGHD$0HLm@IH HAHMEIHHHCH5AUL |H81BX=ZH y H=XE1HXL[]A\A]A^A_fDHHG~  H5?s L)~  H=Io LEIHLHHIH I/H~ H g H9H, Hf Hl HLf M0 I@LD$LH5p HH LD$IM I(pIH;=5 H5H9t C.IWBHJHL$ v MoH=^@ HLHD$HD$OCLD$M I/H=m LLD$cALD$HI I(LH=CIH I/GLLLD$ALD$HI I.dI(JHS} H te H9H H[e H HL=Ge M^ IGH53w LHHR IIHM IHGH| H d H9H Hd H HLd M I@LD$LH5s HH LD$IM I( Ht{ LL$>LL$HIm HI9A~ LL$LD$DLD$LL$HID$=1E1ۻF I.MI(LLL$ L\$HD$CLL$ L\$HD$xHD$fDHC1LICH*HmHCfLCHxCII+qMIqHFHHD$0m?IH5o LHVBHD$8H IMHD$@Hl$0Ld$8HD$IHF(HHD$@HF HD$8HFHD$0>IM~HT$0LLLH5 My<D$<=E11E1; E1E11MtI/teMt I)MtI+t{Ht H(t$H H=kM_I,$GE1LLLL$ L\$HD$ALL$ L\$HD$pDLHD$AHD$nHAoLL\$HD$AL\$HD$1D$]=E1E1= LXA/HLLIM I fDD$=E1E L-v L5g IEHH H=: 1LLI=M LgI/ D$y>E1S E1%DLLL$@LL$fMʺ1IEMlMDIBLM H=ܦLT$LD$=:LT$ LT$ LD$1LLAHD$!=LD$LT$ M' I/$I*I~H;=gn H5H9LD$G E10E1L>MI. E1E1E1E11LLL$(LD$ L\$HD$X>LL$(LD$ L\$HD$!L0>LLD$>LD$L>IVBOHJHL$ M~H=uLD$7LD$vLLHD$I:MLD$$I( L= @LHD$s=LD$fH &APfDL@=L0=LD$fDDD$P>E1M E1D$=E1A E1hL<D$Y>E1N E18D$=E1B E1D$>U fDH5Qf LHV;HHD$@I~fDHF HHD$8HFHD$0N8IfDD$=E1E I/VE1~fDE1H=Ih H[ H5[ fIfDD$=E11E1E1E1E pH=Is L-g HGLHHIMuLHE1E1H5jLD$E H81b5LD$1E1D$=E1D$=E11E1E1ɻE k5LD$I#fDLLD$:LD$LLD$LT$:LD$LT$MoMIOIEHI/HHLHL$ImHL$ILLD$HL$<:LD$HL$DL :D$=I(E1E mfL9D$=E11E1E1ɻE D$=E11E1ۻE E1E1xD$=fDLD$&4LD$HjD$=E11E1E1ɻE 3H=e H5Y H56Y I1LLLT$8LT$HI(LE1ME1D$=F D$=F va3IH=p L5;e HGLHHIMPHLF H5H812D$= D$=F gMǻE E1H=d H!X H5"X IQD$=1E1E1E1F H=o L=zd HGLHH6IM HLLD$E1H5F H811LD$1E1D$=E1{2LD$ID$=1E1E1F OLD$ 2LD$HuHH5H8}8LD$I(uL:7D$>F LE1S E17D$y>D$=1E1E1F E1 MYMuMQIII)5LD$ L\$LT$7LT$L\$HLD$ IM_LMѻF E1D$=E1E13MNMINIHI.LLHLD$ LL$HL$KLL$HL$LD$ II)xLLD$HL$5LD$HL$WLHL$5HL$SLT$]0LT$LD$HHD$HF H5RLD$H86LT$LD$=L\$LD$E1M8D$>F 1LL4IHvD$u>E1S HHH5L jAH HHH81/^<_D$u>E1S E1S^/IHuH'H5hS H85D$u>LLD$ L\$LT$w4LT$L\$LD$ .ILLD$ HL$LL$?4LL$HL$LD$ LG E14D$!>HD$HzE1E H5LD$H85LD$1E1D$=LL$E.I8.IL1L3IHD$>G  .G D$>HHH5H84D$>G E1D$=E11E1E1IϻE f(T$\$5T$\$D$=1MѻF H A1@AWAVAUATUSHHL-LfH|$ HDŽ$L$H_IIkLv HkHD$xHHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$-HD$(Hw Hi H(hHE1AHƹHD$xHHH$HH|$xH/GHhi H$HD$xHDŽ$HT H9XHT H"HL S LL$xMIAH5&c LHHIL$H|$xMH/Hh H S HD$xH9HHfS H]HLRS MI@LD$LH5^ HHLD$IMI(aHI9ALL$0E1E1LL$HIJE1AEWHD$A9HD$H|$xHt H/H$Ht H/nH$Ht H//Mt I(Mt I)Mt I*DDE1H _H={Ht HmnMt I,$NMt I//HL$HtHHD$HHHT$HHHD$HHH%/HIIiM MHH HOHL LOL@HHtATH$H5TH81(XVZH QH=hE1HĸL[]A\A]A^A_M[.fDHH.L8.L(.H.L.ILLT$-LT$ fLLL$ LT$-LL$ LT$LL$(LD$ LT$-LL$(LD$ LT$LL$(LD$ LT$|-LL$(LD$ LT$jLL$(LD$ LT$L-LL$(LD$ H$LT$#+- fDLLL$-LL$fMϺ1HEIlHT HIDIGHH H=a&$1LLHHD$)HHD$HD$xI,$I/L$I|$H;=[H5L|$xH9Q)LLިHH$H|$xH/TH$HD$xHD$HH$H/3H$H;=$HDŽ$H;=L9E$ÅH$H/HDŽ$H]M9H$H$H$+H c H M H9HHM HHH=M H$HHGH5Y HHwHD$xH$HH/ L|$xHDŽ$IH;=FH5H9'LL0H$H$HtH/)H$HDŽ$H|$xHH/HD$xH|$()HD$xH3z*HD$H$H=~$H$HDŽ$HDŽ$D$xHD$x@Ht H/bH$HDŽ$Ht H/_H$HDŽ$Ht H/,HDŽ$`IT$BHZ Md$H=ȏ3#u*LLH/&H#HH,1fDML(TL(N(fD(fD( fDAWE1E1E1A5E1E11HD$HD$3@H|$('H$IH)(HD$HH$HH$HDŽ$HDŽ$HAH_ H UJ H9HHH$HMH$L$,IWBLb MH=m LLAIdM H$L$HH|$xIHD$HLAYE1AH85LD$E1E1HDŽ$H:H5{H8fDE1H$HD$AWA9IME1E1E1E1HD$A WA9HD$H=P L%E HGLHHIMLL$xfDH=YE Hj; H5k; vIfDE1E1E1E1HD$A#WA9HD$pf LD$IfDH=1P L%D HGLHHIMHnLLD$E1H5PE1A#WA9H81CLD$E1E1HD$HD$E1E1E1A%WHD$A9HD$@fDE1yLT$LT$@MAM MyIII) LD$LD$HITMD$;+fD-fDLM|$MID$IHH$H$H/ HT$xH$LH$I/LtHD$xMMAPWHD$H$A9r1E1E1AbWA9R3fDD(AeWA9E1E1E1E1HD$E1HD$fD{HHD$xH$MMAPWA9f.o^H)$HH$LHLֶH5 oVHFHH$dIH5}Ht$H9LD$8LD$8I@L=L LMH=~{LD$8LD$81LLA@HD$8LD$8ML$L%QJ L-: ID$HHH={q1LLHD$eLD$M6L$LpH$H/ HDŽ$AtWA:IPBLr MxH=rz  1LAIPBHJHL$8 MpH=-z u/LHD$8LIMIH|E1DCfD3fD#fDH5= HHVHzH$IF`1LLLD$ILD$HH$IE1E1E1AwXHD$AEtDIVBlHJHL$8 MNH= yLL$s LL$LHD$8LIaMlH$L$H'IH=> Ht4 H5u4 蠣I8E1H$ACXAEH=I L%>> HGLHHIMqLL$xE1E1E1E1HD$AEXAEP IH=]= H3 H53 H2EH== H3 H53 ƢIAWHD$xHt H/wH$HDŽ$Ht H/^ADH=HDŽ$H pH$Ht$xH$,dHI9FIH|$(IH HD$LT$HIw LPHLHD$ LD$HHD$ I.I( H$Ht H/H|$xHDŽ$Ht H/H$HD$xHt H/H$H$HDŽ$H$ z AWLD$xMtI(H$1LAH$H=F L%; HGLHHHHH$LD$8LD$81}E1H$AHXAEH=bF L% ; HGLHH IM LL$xGE1E1E1E1HD$AJXAEI7IPBLr  MxH=tLD$LD$ LD$LLAI MLD$F H$L$HIGH$HIWHHH|$xHT$xH/= H$L|$xHuLL蔓HuHƱH5tH8oH$HDŽ$HAWL ` L LD$L E1E1E1AlXHD$AEHPHT$xHH@HHH$H$H/AALh IPB@Lr  MxH=rLD$8CLD$8U LD$8HLAI0 MLD$8) L$L$MM -H$AWLLD$ LD$RAWGIL$AwXE1E1E1HDŽ$AEE1HD$@La W LJ ~@ pMHD$H9 H2IFH5B LMA H=qHt$u,1Ht$LAIMgHu H$HDŽ$HMA2YH$H/2AvE1E1HDŽ$@ILL$LD$LD$LL$H HDŽ$mD# G  SIVBHR  MnH=pHT$1LHT$IM}L SAXE1E1E1ABH$LL$(E1E1H$H$LD$ LT$|LT$LD$ HD$HD$LL$( 1 ' 4IL$E1E1E1E1HD$AWA>HD$LHIH5I9LLD$LD$I@L5:@ LM H=oLD$yLD$31LLA^E1E1E1E1E1AWHD$A>LD$LD$IPBkLr MhH=nLD$LD$1LAE1E1E1AXAgLIH E1E1AXACE1HLLL$H5AWA9H81|H$LL$E1HD$xHD$8IH=3 HR) H5S) 螘IQE1E1E1AXAoME1AXAC7LD$H$LD$1LL H$IH/uLD$LD$HDŽ$M;E1E1AYAv'H=2 $jIE1E1E1AXAoIHDŽ$AXAgE1E1E1E1E1E1E1AXAgMAXAC01LL!H$IHnE1E1E1E1HD$ApWA:HD$EfDI I@H$H MpHII(5H$HtHLDIME1AXAC]AXL!< MIwI9*HXHHJH~1L;DHH9uH5IHE1AXHVH5}pAoH81E1E1E1&CL6/HD$H5A"YAvH8aLD$E1E1HDŽ$E1LT$AALT$ME1E1AXAoE1HD$HA$YH8LD$HuHH5*jH8H$H/uOAYE1E1E1HDŽ$AvH$HDŽ$HAYH$H/jAE1E1E1HDŽ$E1XH=H5~iH8LcCHHD$HE1H5DiAXAgH8LD$E1E1HDŽ$+LD$JLD$HDŽ$ApW&H2LAYH8aE1E1LD$HiHDŽ$@D1L$MHDŽ$ME1E1AXAoqE1N-LD$HVHH51hLD$H8H$LD$HDŽ$H*1DHaLLL$H5FACXAEH81SL; FLLL$LL$: I)  H1 H H9X`H HHL= MLIGH5i+ LHH^IMI/vH5! H"IH6I~H;=ÞH5vH9ti$u`LLLuII/I ME1 AgHD$fDLIVBtHZ AMFH=._LD$LD$LLHD$LL$MI/ I.[L; L; bu L;  I)aH/ H+ H9XH HHL5 MIFH5) LHHgIMyI. HX/ H H9XH HHL5| MIFH5`% LHH IIHMIHL H. H H9XH HHH HHCL\$HH5( HH L\$IMH+ H1I9@L\$ LD$LD$L\$ HH 1KB I+&E1E1L߉t$(T$ LD$LT$HD$*LT$HD$LD$T$ Mҋt$(z&I*ALLL$(t$ T$LD$HD$HD$LD$T$t$ LL$(VE1DLLL$LL$,fHHxA;EIFMFI@H HHcHEFAFII fIGiMOIAH HHcHDEOAGII fHCvLsIFH HHcHDDsCII f.Iɚ;K Iɚ;> KL9)H\$LLL$ LIL\$L\$HHD$LL$ LL\$LT$HILL\$LT$LT$L\$HI HHE1LjAH=H5 Pj5 AWj5H ARHT$`LT$hL\$X * HPL\$LT$HII+ I* I/ I.I,$tCHEMHHEtSImcLVHE1LLL$LL$MHtHmuHMuf.I~IHJcHHF0HD$HHE(HD$@HE LHD$8HEHD$0HItsI~5I4H HD$HLt$0L|$8H\$@HD$@MIH5 LHVjHD$8HHH59 LHVEHD$@HHsfDLLL$LL$rE11E1E1E1 @1E11Mt I/Mt I.Mt I)$Ht H+MMtI(tBHtH(t_H ōH=~TM#I,$E1Lljt$T$HD$t$T$HD$@Hljt$T$t$T$fDLLL$(t$ T$LD$HD$yLL$(t$ T$LD$HD$DLLL$(t$ T$LD$HD$9LL$(t$ T$LD$HD$DLωt$ T$LD$HD$t$ T$LD$HD$H߉t$ T$LD$HD$t$ T$LD$HD$H=! H;=H5K }HFt H;cIM_L5#% H5I~H9w LL$MLL$` LLLL$kLL$HI I)"LKI/ BE1E1E1kLE1E1E1E1 @=DE1E1E1 @ EFwEFAMcI\HIBfEFAFII I@EOAGII II\LD$HLD$I8EO'EOAMc@DsWDsAMcI AE1E1qL}L,H=) H H5 F|IfDE1E1E1 A H=1" L= HGLHH>IM6HnLH5XE1H81WE1ɺ ADIE1ɺ A~fDLLL$LL$LL\$L\$fLLL$LL$XfLLL$LL$.fLLT$HD$^LL$LT$E1ɺ AfDL(LILLD$LD$IfMGM;I_IHI/, LLHLD$nLD$II(.LLL$LL$HLL$ LD$LD$LL$ IDLL\$ LT$VL\$ LT$HL\$ LT$.L\$ LT$_H=q H;=H5 s HFt H;!Y IMU L5 H5I~H9LLOdIH I/? L1DI. QAE1E1E1M޺1MTIEMlIFHHvH=MLD$*LD$& 1LLHHLD$ I(I.IH;=f H5H9HLPcLIH+I5MI/L;5ËL;5L;5? LÅ I.W HD$HH=mMLHpILL  j5Y AUj5 UjHT$PY IH@HE1 BOIWBHRHT$ MwH=-LvLHD$HIM8H+HPL8ZL(@L5 L= IFHH H=K1LLIMVLwAI/Y qAE1E1E15@HuH H5MKH8DI/ AE1E1LXH= Hz H5{ uIfDH= HB H5C uI0fD1E11E1A IVB'HZ + MvH=ZJLLIM/HM E1LAfDM1E11E1TfDE1LHE1E1 AE1E1 BH= L=r HGLHHC IMHLH5|E1H81E1ɺ B=DE1ɺ A&fDH=I L5 HGLHH IMHLH5p|E1H81oE1ɺ ADM E1!BIE1A I+A@IVBHZ #MvH=JHLL$LL$S LLIMLL$fLL$HI]E1 BDI1HLL\$HISHM1۾VB fDE1ɺ A~fDH=Q H H5 nrIbfDA E1ɺ $B/H=X H HGHHHO IMHHH5zH81E1ɺ $B &BIMFMI^IHI.LLHLD$fLD$II(LLL$LL$A 1LLLD$LD$HHLME1B !H= Ht L\$H5p pL\$He1E1)B H= L5 L\$HGLHH L\$HHH&LL\$H5 yH81 L\$1E1)B k1+B Z.L\$ILLD$LD$IPHMpHII(L\$ HT$HT$L\$ HH0HSHuHH5DH8:H+= BE1E1{E1OI[H1MsHII+XLT$!LT$HIIX?HMVB 1L\$ L\$HAHρH5DH8xHL\$M1۾VB HHсH yH5MjL yAH~H81#Y^@"LMB E11tMGMIOIHI/LHHLD$ HL$bLD$ HL$II(LHL$nHL$L\LOLB BE1E1LD$LD$H~HH5BH8*LD$^LLL5 L= IFHHH=MB1LLIML-8I/ BE1E1E1HHAH5KjL wH wH8H|1R_}@AXPILLD$LD$L1LTIH E1E1 mASE1cLL\$ HT$HT$L\$ 3E1E1IE1E1 JALLT$[LT$ .AE1E1E1H@`HHHLL$ HLD$LD$LL$ HIHH@H\$(H9fD!MwIFHHƈHcHEwI/+LLL$ LD$LL$ LD$I/LLL$ E1LD$[LD$LL$ EwAMcI/EwAGII IEwAGII iLH5&x_'LD$LL$ HI=H@LLL$ LD$LD$LL$ Iz@H@`HRHHBLIH1HC~H@HT$(H9MFI@HHrHcHEFI.#LLD$&LD$I.L E1EFAMcI.xEFAFII IEFAFII LH5v&IH@H@3LIH@`HHHLD$LLD$HIH}H@HT$(H9DJMOIAHHVHcHEOI/CLLL$ LD$LL$ LD$I/LLD$LD$E1EOAMcI/EOAGII IEOAGII sLH5u$LD$HIDH@LLD$JLD$I댺 AE1E1E1 $AE1E1E1IE1E1 B~LHL$ LD$LD$HL$ # mAE1E1E1E0IB#IM LAE1L~IHHyH5<H8E1ɺ mA BE1E1IL\$HL1LoIHnE1E1 Bn BE1E1E1VaIHuH*yH5k;H8E1ɺ B!LD$'LD$H]H"yH5pH8LD$=HHxH5oH8eLL$ LD$LD$LL$ HbHxH5oH8(LD$LL$ =H@`HHHLD$LLD$HIHD$(I9FIFMNIAHHȂHcHENAMcI.LLL$ LD$ILL$ LD$ENAFII IENAFII ENLH5'r`!LD$HIMI/LLD$LD$LLD$LD$IOLLD$bLD$I5H@`HHHLHHHD$(H9GHGLGI@HHHcHDGAMcH/LD$ LD$ DGGII IDGGII DGH5p- HHdI.KL>H@`HIHH9LL$ LLD$LD$LL$ HHHD$(H9CHC"LsIFHHHcHDsAMcH+HLL$ LD$LL$ LD$DsCII IDsCII DsHH5oLD$LL$ HHJI/LLL$ LD$LD$LL$ H|$nH|$IAH|$`H|$I*HLL$ LD$8LD$LL$ I HLL$ LD$D`LL$ LD$IHstH56H8LL$ BhHItH56ME1H8 LA=E1ɺ B+IME1E1E1HHtH5jH8LL$ LD$LD$LL$ HHsH5jH8LLD$LL$ jH1MKB LD$LD$HHsH5gjH8LD$ff.AWAVAUATUHSHXHtL=! HsLnH|$HD$ H\$(H\$0L|$8HD$@HI5H}JcHL5isL}0HE(H$Le LmIEI$I9Lk IxH;=XtjH5KtLD$LD$LLLJHHH H g H9H HN He HL: M IBLT$LH5> HH LT$IIHM| IH8L޺HL\$ L\$HIJI+L;YrL;/rI9LLT$~LT$ I*L;5rAL;5qD I9L0AHD$H1LLLLHIARHT$LT$J _AXHLT$I~I*H9$2IHELHHEI.'Im I,$HXH[]A\A]A^A_H$L5pIDH$L5pL5po@Lv8^IPBHJHL$ IhH=2pu,HHD$LHgHyHH gfH=XXc]1@I*4L׉D$D$$H H u H9HH\ HKHLH M'ICL\$LH5T HHL\$IIHMbIHLֺHLT$)LT$HIxI*L;woL;MoI9LL\$L\$O I+L;5&oAL;5nDu I9b EHD$H1LLLLHIASHT$L\$ Y^HL\$II+3L_&f.LHRIEH+H-" HEImMILL\$L\$LLAmE1I+HH deD1H=UZHEHHEuHMnsf.LHD$cLT$IfLxIH5 LIHVHD$ HLmMHdH dHOHdL +cLOLHHlAUHFiH5l8H81XZH idH=T1Y@E 1 fIJIHwJcHHF8HD$@HE0HD$8HE(HD$0HE LHD$(HEHD$ KIIeHvJcHfDIH5=kLIHH;lH;ku L;$"I+u I/ HT H H9H H H HLx M ICL$LH5 HHE L$IIHM IHIxH;=kO H;=PlH5ClL$L$fLLL$wBL$ILIMI(IBL$LH5 HHE L$IIHMD IHXH5 LǺL$(L$HI( I(>L;wjL;MjRI9ILL$蝽L$ I* IIH;=fjH;=k H5 kLLLAMHH>MI/ HmdLMIbKDHPL@H H H9HH H:HL MIBLT$LH5 HHwLT$IIHMMIHL޺HL\$~L\$HII+L;hL;hI9LLT$LT$I*r jL;5{hAL;5PhD< I93 L裻AHD$H1LLLLHIARHT$LT$ IXZMLT$tE1ۻ\ArH= H2 H53 TIfDmH _H=OTHm51E1fDH= H HGHT$HHHI HT$IMrH$hH5\H81mn@AmI*uLL$L$MLT$I2fDLLT${LT$LhLHD$SL\$fAmE1hDL߉D$D$.H5fLܽIH H;9fH;fDI9;LL$_L$ I+I/kLL$$L$I/aA@LAD$ۺDD$Hw-pH \H=RM]RHmH1LL\$L\$&fLHD$賿LT$&f"AoE1DHFLHD$ 觻IM/HD$0Ll$ Ld$(L|$8H$Lt$@!fDH5Q LHV譾HtHD$(IM~H5 LHV臾HtHD$0IM~H5 LHVaHtHD$8IMbH5 LHV7HtHD$@IM8HT$ LLL`H5{ 2rIPBHJHL$ xMHH=$L$LL$GL$uHLL$LD$LHD$LH$/L$LD$MLL$蔸L$H AI(Lʽ DIWBHZ MGH=*$L$葷u+L$LLH艺HHMAcLL$,L$LL$L$dLL$L$LH$L$LмH H : H9H_ H! H HL M, ICL\$LH51 HH` L\$IIHMl IHLֺHLT$LT$HIs I*pL;\aL;2aI9LL\$聴L\$ I+uL;5 aL;5`HI9?L5Ab HD$H1LLLLHIASHT$L\$? AZA[HL\$IAtmfL߉$%$xDH= H H5 LIFfDD$臵DD$HUnf.E1ۻAnDL$蝺$DoQH=) H HGHT$HHHHT$IMH\`H5ITH81Ko@Ao3kL\$IdfDE1LȹC AoH= H H5 6KI.fDAH=) H HGH$HHHH$IMH^_H5KSAH81BUDA6kL$IEL׉D$輸D$yMHMIHIHI(MLHLLL$H $>LL$H $II)LHL$L$OL$HL$軲L$IMAPDA$$MADL߉$ͷ$MMAE1Hh H H9HFH HHL MIBLT$LH5 HHLT$IIHM-IHOL޺HL\$L\$HIqI+XL;;\L;\I9LLT$`LT$AI*EL;5[L;5[6I9-LAƃ HD$HE1LLLLHIARHT$LT$[ AXAYHLT$IE1ۻAvFH=q H H5 GIAp0H= H8 HGHT$HHHHT$IMH[H5OH81豯Gq IAqݯLT$IGqLLT$4LT$MOMUMGIII/LLLLL$L$ ;LL$L$HI)DLL$δL$/@HT$IAqLLHD$薴L\$yHXH5>H8覵ANAqE1DL߉D$ID$vLHL$L $/L $HL$fMMA>H H K H9HH2 HHL MICL\$LH5r HHsL\$IIHMJIHLֺHLT$?LT$HI(I*L;XL;cXI9LL\$貫L\$I+L;5 HHL=* MIGH5 LHHEIIHMIHH HHD$HHL$H9H6uHD$PIH/1IELd$HMlMtID$LMH=] Ȝp1LLAI轟M>H|$PH/FHD$PH|$HH/$Ld$HI<$HD$HE1H" At$I|$ H $HLL HD$1AIHH;GHD$PMt ImIGH5 LHD$PHHHH|$PH^LE HD$HHH|$PH/sHD$PH|$HH/QLL- HD$HIVLHHT$ HD$HAH@HT$ HHRH|$LHD$HS+LL- IVLHHT$ 褢HHH@HT$ HHLHD$PHH+H@HD$XH;D$UHGHD$XHCHWHHH|$PHT$PH/!LD$PLt$XIxMH5FH9LD$>LD$LLH|$XHD$HHEOH&H5 LIHVI\HD$pHD Lmf.IH y<H{<AHMEIHHCDH@H5%AUL <H81袙X8ZH <N H=,E11HĘL[]A\A]A^A_IH(RIPBHJHL$ ] MhH=>LHD$LIMH|$XLt$HHt!H/HD$HHD$XHH|$PH/,HD$PH|$HH/HD$HE1Ls@aH|$HD$HCLd$ H\$Hl$LII0LLL0I@H0I8H0H6ĝ1I$AOIG ,wH(H0H0H@(A;w}MHcI H0H@H0Pt8' H(HR8HcR H0A;w|HH9+Hl$Ld$ H|$跘HD$L5C H@HHOH=+1H|$LHHWH\$pH\$HHD$HH'H|$pHH/HD$pI<$I/L蘜[L踚f.{D$ID$j Mt$IFHHLHcHEt$AD$II fDH= D$ fH= I* L;-A H H X H9HH? HHL=+ L|$PMIGH5 LHHILd$HMH|$PH/r H H Ǻ HD$PH9HH H9HL= L|$PMjIGH5 LHH?IMQH|$PH/ H a@HD$HHD$PHL$H9HKHD$ HD$IHHD$PHtID$HD$PHD$IEMlHD$ Ll$HM|IELMH=>11LLAI3ML|$XI,$4H|$HH/2HD$XHD$HHH|$XH/Ld$HH HD$XHD$HAt$I|$ LH5J HD$ID$IUHt$ HD$0HHT$(-Ht$ HIH@HT$(HHLLIHl#LH5 IQHt$ LL$8HHT$(ƚHt$ HIbHxHT$(LL$8HHLLHD$XIH%HxH;|$MEMIEIHH|$XHD$XH/Ll$XH5>I}H9vLD$oLD$_LLLD$LD$ILl$HI(Ll$HMH|$XH/HD$XH|$HH/HD$HLk@HD$HC1H|$~QL|$ L|$0Hl$(Hl$Ld$IHfD$LLHlKIL9uL|$ Hl$(Ld$H|$IGL-s HHFH=_h1LLHUHH\$pI/L|$pMI/HD$pI<$HmfDHؖHȖ?IIlMI!HFHHD$p轒IH5S LHVHD$xHuIM< Ld$pLt$xL$I0HF(HH$HF HD$xHFHD$pEIM~HT$pLLL[7H5V y8vH$E1E1仮 A;9H|$HE1HtH/Mt I.H|$PHt H/H|$XHt H/H 2DH="'MtI,$E1Mt I/Ht HmHH<$H$HHD$HHH`fD۔dfDLȔ)軔 fD1LI裔WfDL萔E1E1仰 A\9Lj;H 6 H$H1IHHD$HL9H H ҳ HD$HH9HH HcHL% MID$H5 LHHILt$PMiI,$>IGH5˽ LHHrIMHC H5 H9pH HHL5 MIFH5 LHHIMI.H 8HD$PHL$H9HLL$VLL$IHD$X1MI,$ A/:I)>H|$HE1HE1Et$[Et$AMcIF HcI,Et$AD$II I9H= L% HGLHHIMH*8LH5,E1E1价 A9H81ˑL辑贑IwE1H 1hgE1H=2 A9#HD$HDu;HP0H;0HHP0H0H0H0jy:YHG(H0J(H)0+H0LcJLhLhMH@IEHH|$PHD$PH/LL$ILL$HHD$XI7MnMdLd$PMLID$LM H=*蕄1LLAI芇M0Ld$HH|$XH/NHD$XH|$PH/,HD$HHD$PHH|$HH/Ld$PMHD$HHD$PIUBIHR  MmH=sHT$كu+1LHT$IцMbCHGHD$HAC<I/x E1 IPBYLj  MpH=Y1LAIQM[hH5 LHV荈HH$IIUBHR  MmH=mLD$HT$ ΂LD$u9LLHT$ IMLD$X-LD$HIoE1:H|$HHE1E1 A9˂LL$ A9E1E1{&mH= H˧ H5̧ IHF HHD$xHFHD$pIxcrHUE1E1 A ;H訇E1价 A9H=I L% HGLHH- IMH-L⻷ H5k!E1A9H81doE1E1 A;YM A9聁I0E1E1 A';LHMH@IHH|$HHD$HH/LL$ LL$HHD$PIu A9MO{chYFIELl$XH _&gMH=' AW:jHD$PLLzH6LD$LD$\H' H HxH9HXH_ HqH~1fDH;THH9uH5*HJM﻾ HWH5~AY:H81f Ad:E1E1价 A9jIPBHR  M@H=LD$HT$HT$LD$LLIMH|$XLd$HHKg1LLHD$XIHE1A<  Af:LhL[+~IH8H(H5 A9H8T_H= H H5 ISH)L As:H8)E1 A;'H=z L%# HGLHH IMn L|$P}IE1 A;L\:H`)LAu:H8~HD$PH= H H5 ILLLL$LL$H= L%M HGLHH IMg L|$P)}IE1 A;E1 A;1~M A<+HPHT$PHH@HHH|$HHD$HH/QHD$ HD$~HD$XA<E1E1 I,$*LȁIBH' A3<H8|蓁j艁HE1E1价 A9HH|$PTLD$PIxH5'H9LD$M~LD$I@H5ո LM H=LD$Ht${u1LD$1Ht$LAI~Ms{H' HD$HH|$XHGAL;I/E1E1 H&A5<H8{HD$X {HE1A< HD$XkfD A:pIPBHR `M`H=HT$z.HT$1L 1H|$1L9HLLL$ A/:LL$:zHHH#H5@H8言}k A:H= H H5 I@L%} MRHpI9HXH HJH~1L;dHH9uH#IL$E1E1HVH5 A9H81xLL$~LL$H= pIL1L}HD$HIH A::f.A: exIlL+~E1DxIE15L E1}4HH"L AjH5sH H8H"1wAX8AYBE1PL};A : H= H H5 I A:H= *I A<rA : GwI1LLx|HH #E1 A<;H83x|HD$ HD$(H"A>;H8wHD$P5wHHH H5;H8}BE1仺 HD$HA::vI;1vIvHHD$H A::pf.E1H@`HBHH2LIH!H@L5!L9%MwIFHHt+HcHEwI/QLq{I/:LE1W{*EwAMcI/EwAGII IEwAGII LH5/hIHH@=LtIH|$PHt H/RHD$PH|$XHt H/? b;H=HD$XH I HT$XHt$PH|$H <HL$XHT$P1Ht$H8vHD$HoIGHHDH=HL$5tHL$Ht$1LHD$"wLL$MI/HL$HHD$HHkML; L; ?L; 2LLL$1rLL$AI)!EH|$HEfHt H/HD$HH|$PHt H/oHD$PH|$XHt H/OHT$`Ht$hHD$XH|$p"u'E1E1 A;'HXH5,M﻾ AY:H8yLE1E1 xAsHHPHH5GH8yf.E1 A;AC<HHH9GHuH; 5HIL H5.E1A;H81'rHD$P)drIE1LL?wH[1LL*wE1L1wIUH H5MH8xHH52H8xHLL$XwLL$~LLL$AwLL$MAy;HT$`Ht$hE1 H|$p5sPLL$wLL$HHI9HuL;%HCH5E1 A9H8wDqH-HDH5$H8w{vqvI)DLVvHzL H5_E1A;H81XpHD$PZpILA;HT$XHt$PA;mrHD$HHD$PHD$Xu A3< As:HH5UH8v1LtA>;HH5 H8v0HH5AC<H8gvHD$HoHtE1#HD$HH5H8,vLL$Ht$1LStIA};tAu:+E1 A<;H eAt3MH@`HHHLIHL9pID$Mt$IFHH$HcHEt$AMcI,$LsEt$AD$II IEt$AD$II Et$H5HIH]I/1Ls$A;V"nHuH&H5H8tL]mIIL}I9H|$HHt A9E1价 A9tA5<H~H5H8'tLD$ff.fAWAVAUATIUSHH8L= LnHD$ L|$(H IIMHYH IHOHL LOL@HH AUHH5H81plXcZH H=E1nH8L[]A\A]A^A_@L~ LkIIEH H H9H#H HcHL5 MIFH5 LHH HIHHIHhHH{HD$H9H5H9wRnjLHHIM!HHI H9HXHt,HqH~K1HH9t7H;TuHH9HuH;fDHa H R H9HH9 HX HH% H HCH5! HHHHHH+HH}HD$H9H5fH9Mm@LHHH$H<$ HkHSBHj E LsH=JiLLIlM]H+ZID$H5 LHH{HH}H{H;|$fHkHYLkHEIEH+ALHL;HmIm MhImI+IHPIIHLn@HUBHZ % LuH=2hLLHH$kHHmMH H H9H=H HHH-ґ HjH<$H5 HGHHHHHD$H9E KnIHE1ۺAdHmE11Ht H+Mt I.Mt I+TH 2 DH=E1H<$tH $HHD$HHHtHmtGMtI,$tKI/ L!m@HmLmHlfDLlfDH5)H9t i_HSBPLb HkH=9fLHIAH$iL$MvgL$HHFL4$E11E1ASdfL߉T$$lT$HL\$T$lL\$T$WfHL\$E11T$kT$L\$@LL\$T$kL\$T$fHI I1 MHgH5 HIHVIjHD$ H8M Ll$ L|$(8H(kHkHkLjLL$jL$HjI1IM|I\I@HHH=5LD$dLD$ LD$1LLHHD$gHLD$ I.I(I/fH<$H5 HGHH HH? H5 H9HCH;H{u{wHL=E1HL9HAH+gHmlH] H@EH9! H H!HH H[HCH5 HHHEIHHMHHu HD$I9C"L\$jiL\$HH L|$E11Ae<H9A H, HHL5 MIFH5l LHHHHIHH@IH H<$H5u HGHHIMIFHt$LH@pHGH@H:IIHMIH L\$EhL\$HHLXjIHBHp H  H9HH HQHL- MoIEL\$LH5 HHL\$IIEHIEMHH5A LLL\$iL\$DI.HCLMH=L\$`L\$rLHHAIcML\$H+HmjI+ID$H5 LHHIMI{H;|$i McM\ MsI$II+LLLII,$HH2I.H+H<$H5Ò HGHHIMgIHH LLL\$HICH H^L\$HII+]I.FHt$LLaL\IHH<$LHGH@pHH@HL\$L\$IMI+L|$L~LdqDLdLdsLLD$dLD$OfHL$dL$~E1E1LHIIMH= L5 HGLHHHHH@ LH5*H81,^L|$E11Ad^H= L-D HGLHHhIMH LH5H81]L|$E11AreBf.CL=AILH8cH(cH=ٚ L5 HGLHH]HHH LH5H81]fE11AtdH$/H= Hj H5k 6IfDH= H2 H53 HfDH= HŽ HGHHHIM~HVHH5@H81B\fE11A'dH$o1LLLD$QaLD$HHD$zM1E1LźAdE1E1E1H$Avd\HLE1E1H$A)d[HLuMHMIHHm^ HLLHL$9I.HL$H$LHL$`HL$HkHtHKHEHH+HLHH $HmH $IgHH $`H $RHFHHD$ \IoNH)L$ v\HHT$ LHLH5D" ϹcDH=y H H5 HfD[ZH}L4$E11AEd3E1Ad H=] L5 HGLHH HHPHLH5E1AdH81}YAdE1E11jYH!H$E11E1ۺA8dE1JH$E1E11ۺAdHUHLEHIHmLD$HT$_HT$LD$HIvIVH5 HHV]H!HD$(IF XHH E1E11ۺAdfXH H$E11E1ۺA8dHtXHMLźE1Ad11*L|$E11Ad,L]KHL\$]L\$tLD$"XLD$HHHH5#AdH8^LD$ME1L|Mغ1H $HHLIELlI@LM_H=LD$WLD$>1LHAHYHLD$tH+I(L9H;-H;-~H(UAŅHmEqH* H  H9HJ H H HL MU ICL\$LH5 HHz L\$HHM I+H{H;|$ H5/H9XH4$HIbIM/LH+AH $HHD$HHID$H5 LHHHHH{H;|$HkHLkHEIEH+LHLAHmI$M ImI+}IL|$HPIDJHSBLj L{H=AT H4$LAIWMUHa L|$E11E1ۺA-efDH5H9tZGWuQLHIIHLD$ZLD$GLYDLL\$YL\$HSBtLb +HkH=`Sh LHIAH$VL$M,TL$HH L4$L|$E11E1AQeH;YHVHH AdH+ H߉T$E1YIL|$1T$hL4$oHXpH53H9tiL\$UL\$uVLLL\$cL\$HML4$E11ASdE1E1LL\$wXL\$EISBtHZ McH=L\$QRL\$LLHDUL\$MHRL\$H LL|$E1AeRDHH $WH $IHH $WH $1LHLD$WLD$HHL|$E1ME1A eL`WvLL$OWL$WL>WL\$:H,WHL\$WL\$HL\$WL\$]LVeLVHL$VL$HLD$HT$VHT$LD$H= Hz H5z /IH= Hz H5z HH]VHPVLCVFH6VCPHLL|$E1E1AteE1AdoPIMsMMCIII+ LD$%VLD$HHwLs^L|$E11E1ۺAweOI3L_U3LL|$E1Aye~L7U'L|$E1E1A|efLULUL|$AeLHHL\$ETL\$HIL|$E1AeL|$ME11A eE1L4$LE11E1ASdL|$E1AeLD$NLD$HIHH5E1A eH8KULD$L|$MSL|$E1Ae+H=U HFw L\$H5Bw mL\$IDL|$Ae&NIhNHL4$L|$E11ACeMH HL|$AeML\$IH= L\$L\$ILkyE1_H=p Hv H5v I`MH^L|$E11Ae:H=' 蒶ItL|$E11Ae ML\$H~LL|$E1AeLIL|$AeE1}L{MSLkIIEH+H$LL;I/IOLQBL\$LL\$HIHGH5AeH8RL|$L\$fD1HD$E11A8dHH5;H8RL\$H$HH5E1AdH8mRE1ۺoH<$L\$rL\$ILL|$E1AevuKI#LL|$E1Ae0LL|$AeLLD$PLD$L|$E11A-eE1E1E1)LL|$AeLL|$AeL4$L|$E11AQeE1E1vLL|$Ae|HH5L\$E1ASdH8QL4$L\$E1$LL\$AeOL|$L\$LL|$E1AeHOlJHYL4$LL|$E11E1AQeIIE1E11HͺAdlH$E11E1H˺A8dYHD$E11A-eHkH5H8PL|$L\$LL|$E1MAeHL=HL9@AH;-HE H;-g@ L$HuHhN|$HFAƅL|$E1E1Ad1lLLAeIE1LźAd=IL|$1E1YH]H5LE1AeH8NL|$L\$#H'H5hL\$E1AQeH8NL4$L|$E1L\$LL|$E11E1ۺA-eAWfAVAUATUSHHHLnH-z H<$HD$pHl$x)D$`HjIIIIHH HMHAUHLDHgH5PL IH81FXPZH FH=UE1HĈL[]A\A]A^A_Hn0HC(HD$Lc H[HD$8HD$@HD$HHD$PHD$XHD$`HHEL-| Hl$0I9GL (L9MM9M„RJ} h(A} (HULt$0I;UKHEIMH9@H@t H&} Au 8@ H}H@ l*IuHȃ13DA9HtHJL D@I.'HD$0HD$HLt$@Ll$8HLHD$LKH H l H9HHl HHH=l H|$PHHGH5Wy HH7HD$XHH|$PH/pHD$PL|$XIH;=$H5H9t 0G IWB HJHL$ (MH=C(LHD$LIFM$H|$PL|$0Ht*H/ fHD$0HD$PH$H|$XH/HD$XH|$0H/HD$0H|$8Ht H/HD$8H|$@Ht H/HD$@H|$HHt H/H5p 1LHD$HEHD$PIH#H;)L;= L;= LOA…%$L|$PI/ fDHD$Po$HHHD$PIH%HL/EHD$XIH%H|$PH/HD$PH|$XH;=jH;=@H;=@ADžx%H|$XH/HD$XEw%ID$:ID$HD$HH$HHcHDH;-iuWL;-XIL-u M9OM9NM9M„Y!Q!A~ ,A} ,IVH|$0I;Ug IFIMH9@H@t HB EN Au Dȉ8 A _/MFH@ :/IuHȃL1X4ADA9H'4LE1HDFAH|$0H/uNFHD$0EOHD$fDL5s L;5 M9NZH=LBIHFH;+H;#L;="LQ>I/A"E=QE1E1E1AqfLHPBIHAH;L AH;{Du L;=$I/E0L EL QE QE1E1E1AqLL$0MI)H|$PwHt H/PH|$XHt H/tMt I(}H|$`Ht H/yH GDH=VMt I/bE1Mt ImHH+HDDAD$AT$HH HD$fH|$LL`DH{ H 2f H9H"Hf H#HH=f H|$PHO#HGH5u HH#HD$0H#H|$PH/HD$PLd$0I|$H;=e'H5H9p@HLDH|$PHD$XHtH/HD$XHD$PH|$0H'H/YHD$0Ld$XH+QID$H5o LHD$XHH'HH|$XHf'H5j H9HGH;[)Hul@HHHD$0H/HD$XH|$0H;=H;=wH;=:Å(H|$0H/HD$0 ID$H5k LHH,HH|$0H,H5i >HD$XH-H|$0H/8'HD$0H|$XH;=H;=H;=W:Å/H|$XH/'HD$XR"Hx H@H9Hc 3H3c H)3HH=c H|$0H2HGH5^o HH3HD$PH|$0H2H/*ID$H5p LHD$0HH3HD$0H?3HD$PH H9H9@1HD$`IHmH|$0H(HH/H|$`ARHD$0fDHt H/9HD$`H|$PHt H/ HD$PH|$XHt H/HD$XH=u J:DH=vH THT$0Ht$`H|$XnH|$XHt H/J#HD$XH|$`Ht H/ #HD$`H|$0Ht H/#HT$8Ht$@HD$0H|$H3;H>HD$0IHS6H=o H6HD$`IH[6H|$0H/C-H-t H5HD$0Ll$`H}H9K&;>&LH3HD$0IH%;H|$`H/-HD$`H|$0H|$0H/-HD$0LhSH|$PE1E1E1A8LL赺DH|$PHD$0HRH/C=9fI/3LT$=T$fDH=H/u=HD$0H-Ns L%c HELM#H=o7'1LHAId:ML|$0LޙH|$0H/_HD$0!QH|$PE1E1E1ArLt$0EDIuL-j I9HH9EI9E} 2A} s2HEI;EIUHuH9@H@t H} Au AAAD8uu@ [5H}H@ 65IuHDA`9A9DDE9u6Ht#LT$H;LT$ufIɚ;)L-ll I9HH9EI9Ev n } 2A} 2HEI;EHUIuH9@H@t Hu EE D@@8uy@ 5H}HA 4IuHDA9A;DDE9u:Ht!LT$H:LT$uHI9R*L9t$+HD$H;~'HQr H b\ H9H-HI\ HW/HL=5\ L|$PM,IGLT$LH5h HH.LT$IL|$0H|$PM.H/B$HD$PLl$0I}H;=i/H57H9 &LT$6LT$ &Ht$LLT$]LT$IDLD$PL|$XMtI('L|$XHD$PH|$0MO0H/e$HD$0H|$XH;=H;=rw!H;=j!LT$1AŅ/H|$XLT$H/@&HD$XE%HD$H CH9HE2HHD$0LLT$1HD$XIH59HD$PIH(6HD$XH|$0LHD$XIG5HD$XIH5H|$0LT$H/G+HD$0H|$PH/+HD$PL|$XHD$XHo H Y H9H/HY HR0HL-Y Ll$XM/IELT$LH5` HH/LT$ILD$PM/H|$XH/p&LT$HD$X7HD$XIHA0IHD$XLx^:HD$0IH0Ho H X LT$H9H0HX H3HL-X Ll$`M0IELT$LH5e HH3LT$IM&3H|$`H/)H5f H|$0LLD$LT$HD$`[9LD$0I(LT$*LD$PHT$0Ll$XI@HH.H=HL$(LD$ HT$LT$L04LD$ LHT$HL$(LIHD$03MLT$4H|$PH/*HD$PH|$XH/*HD$XH|$0H/v*HD$0MH|$LT$H5_ HGHHs7LT$IMK7LLD$LT$ '.LD$HHD$0HLi0LD$HHD$X~:I(LT$ 3H|$0H/2HD$0H|$XHG=HGH6Hb6H2x?LT$ 7LT$ HD$H|$G9H|$XH/G2HD$XHD$H;v9HD$HLT$ H5e LhFLT$ 9H,$H5d LT$ H~.见HD$8IH:HH5c 胁HD$0HH:HH9GLT$ #5HoH5HGHEHH|$0HD$0H/8H|$0HLT$ 0HD$hH HHHD$pH\$`Ld$hHl$xHD$:D{0kfDk0!fD[0.Ll$QUAfDH|$PWfD+0fD0=fDH=\ H:R H5;R HVfD/IfDCQH|$0Ht H/ HD$0H|$PHt H/b HD$PH|$XHt H/5 H=6e AuHD$X)uH=$H HT$PHt$XH|$0ĂH-d L%U HELMH=)1LHAI,ML罄QAwwI,$uL.HT$HHt$@E1E1H|$8*E1fDH=Af L=rZ HGLHHHHH|$PEQkfD(fDAD$HD$fAD$HHD$H|$(H HD$f.AD$AT$HH HHD$DLH&I/L A{gtQAvIT$BLj +Md$H=S'LHAIJ*MhH|$PLd$XHH|$0@HFLHD$`)HL)HH5] LHHV>,HD$`HLk@HM0LEHIDH3'H'H*HD$0H|$PE1E1QArkf.HXHH@HHH|$PHD$PH/ *q,HD$`IH4I]HD$0IDHc HLt$`HD$0Ll$PIDIEHHFH=:%"1LLH(H!H\$XH|$`H/HD$`H|$PH/^HD$PH|$XH;=H;=WeH;=X#Å!H|$XH/HD$X H|$HHt H/WHD$HH|$@Ht H/JHD$@H|$8Ht H/=HD$8iH=b H nL H9H<HUL HHL=AL L|$0M[IGH5[ LHHIL|$`H|$0MH/{HD$0X*HD$0IHI$HD$0L`,HD$XIHHta H K H9HYH|K H+HL=hK MWIGH5,X LHH&HD$PHI/HT$PH5SY H|$X+H|$PH/"Ll$`L|$XHD$PLt$0IEHHXH="7LLLI%M+L|$PH|$`H/ HD$`H|$0H/HD$0H|$XH/HD$XH\$PI,$HCH5>R HHD$PHHIL|$PMIGLA&IGH!HH  L*II!L|$PI/T HD$PH;NLcMPI$1E1HfDHIL9HIL)H9~H&HD$PIH%H=bP HHD$XIHB(H|$PH/H-\ H5\HD$PLd$XH}H9#LH聣HD$PIH1H|$XH/nHD$XH|$PNH|$PH/sHD$PSE1E1ADLL$0E1MqIR&HD$0M0ARImH|$` L&H|$`SAHT$8Ht$@LE1H|$HE1"E1L;5u'L;-LuM%fDH%IGHD$PHMIWHHH|$XHT$XH/ Ht$PL|$XH-LLp;Kf.Gf/GDHAHE1QAy}DHHKH5H8%H|$PHD$0HDHD$0TQD$ fDQE1E1E1Ayk[$'fDK$fD;$fD+$gfD$fDH-Y L%jJ HELM H=?1LHAI ML|$PLaH|$PH/ HD$PQE1E1Az{#{fDLh#mH(%L 4@E1QA{DL$L QTLHD$f."fD"fD"fDI/DTL"DCE1E1QA{~f.QE1E1E1A{[H!HD$XIHH=qN HHD$PIHH|$XH/! H-W H5KHD$XLd$PH}H9LHpHD$XIHH|$PH/ HD$PH|$X=~H|$XH/ QE1E1E1HD$XA|`@LP! HD$0H|$PH~@H=M HBC H5CC 讲H)fDE1 fDIM0IH@IDHf fDH5J LHV HbHD$pHKfDIܽRAH|$0H*H/uY HD$0H|$`.fDH=W L%L HGLHH_HHH|$P4H|$`IܽRA[$fDLjDfDfDfDH;-quL;-`uLHLT$9IH'H;LT$L;=g L;=  LI/LT$A EE#+fDHV H @ H9H!H@ HHH=@ H|$PHHGH5P HHHD$`HH|$PH/ H5^F 1LHD$P3HD$PH<HHD$0HHLIHH|$0H/S H|$PLHD$0HD$0HH|$PH/eHD$PImDLl$`I}H;=>tH5Lt$0H9LL#HH\$XH|$0H/ H|$XH|$`HD$0H/HD$`H|$XH;=sH;=IuH;=tAH|$XH/HD$XfHUBLj HmH=JFLHAIML|$XfkfD[fDKfD;fD+fDfDID$HD$PHIT$HHH|$0HT$0H/Ht$PLd$0H$HLqTHuH H5aH8HD$XH|$PHIfIܽ RADLLT$[LT$-RAHoE1bH;-ubL;-uQLHLT$IH>#H;&LT$L;= L;= LGI/LT$As EEfDsfDcfDL "LH=F H< H5< 讫IH/LH5H81HD$0fH|$PE1E1LzSAfkfDDv@2RA1LHHD$0IH<DE1E1L|SASI#H=P L-E HGLHHIML|$0AGHHAGH IfDEW H;ɽHD$0H"H|$`/RAvLLLHD$PIHE1L㽍SAfHUBHZ HmH=~56LHI-ML|$0f.H|$PE1E1LSAf$fDDDuE1E1L㽄SAL㽋SE1E1AE1rIM0IH@IDHIN0MFHA@LEH=C H9 H59 ȨIE1E1L㽆SA L1HjIHQAw.IUBQHZ MmH=X}u&LLHH&1HHt1HH54}H8H=B 4zIMLE1SAE1X1LHzHD$PIH@E1QAzvfDHD$0QLT$LT$'L㽍SE1E1HD$PA E1SAI,HpADHhLCQH5MH81OHD$P>H|$`PRALT$LT$vH5HcLT$HIEHL|$PI&HHD$PE1L㽍SAfDL=K MJHsI9HXHwHJH~1L;|oHH9uIOHVSE1HH5AE1H81 E1RRANIIUBLz $MmH=0zLT$ LT$LT$LHt$AIMLT$LD$PLl$XMH|$01;LLT$ HD$XIHytHD$0IHCHD$LT$HIGHD$XHD$0IG HD$XLT$LT$LLT$` HD$PIH8HD$XIHHD$PLT$HD$PHD$XIG+IGTRAADH-G L%|8 HELMH=x 1LHAIML|$PL{nH|$PH/ HD$PTE1E1A-LLT$L|$XLT$|I/DmLLT$\LT$M HVHH5wH8^;LT$LT$|HUB*Lj GHmH=w XLHAI MpL|$PQiHHEH5.L 'jAH <H1H81 [P]HD$PIHYH=B HHD$XIH#H|$PH/ Ht$XH=E HD$P茍HD$PIHH|$XH/$ HD$XH|$PylH|$PH/ HD$P_TE1E1A+HD$PQE1E1Az wLj`1LLHD$XHRAI/DLLT$LT$v H.E1QHD$PAzqH-D L%*5 HELM H=Wu1LHAI ML|$PL1kH|$PH/_ HD$PTE1E1ANL-< L9 E1k1y%6H=: H*0 H5+0 覟HH|$`[RAH=R: qH]RAS@LD$LT$ LD$LT$E1E1QA|E1TAH=9 H>/ LT$H5:/ LT$IH|$``RAE1QA|LT$ LT$ LT$QE1E1E1A}_Ef.H@`H HHo LIH^ H@L=WL9fDYID$HD$HHHHcHAD$HD$I,$L6 /I,$L HD$AD$HHD$I,$AD$AT$HH HHD$AD$AT$HH HD$vLH5תZIHH@LHD$LLT$ LT$E1E1TALT$I+LT$C LT$vLT$/ LT$JLT$ LT$H=z7 LT$nLT$IHLRH5IAH81HD$PJ7HH=7 H, H5, 5HRA IEHD$PHIUHHH|$0HT$0H/SHt$PLl$0HHT$LLT$VLT$IyLLT$ LT$sSE1E1E1AHLT$ LT$5H=36 mH1"1tRA#0HuHH5=pH8 HD$X'RAQE1E1E1HD$XA|9TE1E1E1A E1TARALLT$ LT$f;TE1E1E1AHLT$ LT$(f.H|$PE1E1LNSALl$qE1E1LXSAcZCH|$`RA(H=4 H) LT$H5) LT$I#E1UAH HD$XE1E1QA|UAT?LT$IE1H=4 LT$ykLT$ILLLT$LT$HHD$gE1E1!UAWRA>4sE1UA HH5,vH8,MrIME0@IMHLHDLM0@LEHLIDARwH|$PE1UAH|$LT$LT$HHD$0IH|$PE1E1TAuH=2 H' LT$H5' ՗LT$IE1UAA@IuHIu0@@H}HH}0HD$0LcSUAE1)SHD$8IH4 H$H5}5 HSHD$0HH HH9GLT$ OHoHBHGHEHH|$0HD$0H/u H|$0HLT$ 躂LT$ HD$XHm H|$X H|$0H/ HD$0H|$XH/ LT$ HD$XH<$LQHLAULT$0HLL$ LD$(LH H|$H^AXHH5+ `H|$8HD$@H/ HD$8LD$@M I( HD$@tRAMuMIEIHH|$`HD$`H/&HT$0H|$`LHD$XI.sLfE1E1 QAq鿾RA9E1UA霾E1E1TA醾H=/ LT$QgLT$IOH HD$0H|$PE1E1LcSAPLT$IC1LHlHD$PIHE1SAhE1E1TAƽDDHD$XLD$PME1TAE1E1TALT$ RLT$ HD$LT$0LT$LLT$LT$DDLT$LT$1LHGHD$PIH=E1{TAC1HH5^hH8#L-:2 E1L9!UAE1E1gE1SAIHHH5g!UAH8NE1DDH@`LT$H"HHLIHL=L9xLT$ID$W ID$HHtZHt3LvII,$LLT$kLT$I,$LLT$ILT$tE|$AD$IMI I,$UET$콞SE1E1E1AHoH5CE1SAH8 E1ֺHCH5fH8:RLT$HHH5VfH8LD$PLT$HD$XME1E1TA[E1TAH@HߣH5H8P%LT$ 1LT$ HD$XDD E1E1QAqE1E1SA͹LT$ ߍLT$ HD$XH|$PE1E1TA鶹E1E1TA郹GHH‹GH HT$GHD$H E1SHD$PALl$OUAH|$LT$IE1E1OTAE1MTAiH@H5dH8HHI9HuL;=m~HD$PSE1E1AHD$PSE1E1AHE1SHD$PAH@`HHHLHHqL9xHGHGHD$HHHHcHGHHD$H/GWHH HHD$ՋGWHH HD$GHD$H5xJHH[I,$DL27H|$ #H|$ HD$nH|$ :H|$ HD$UE1ZTAxHD$P{TE1E1AYdH?E1{THD$PA/LT$ LT$ 'LH5ILT$HILT$ H>HD$H|$XLT$ LT$ 6LT$ JLT$ "LT$ HLT$ LT$ LT$ LT$ qHLT$ LT$ ?LT$ LT$ |Ll$SUA駵Ll$lUAE1鏵H51 H|$LT$ _LT$ Ll$bUAE1THH5aH8jBVH|$8H/Ll$AE1HD$8 UH|$8H/Ll$AE1HD$8ٴpHHpH5PH8HH5hH8I,$L VDLl$ VAcLWML@iLl$wUA*yULHD$XIHFH=l, HHD$0IH H|$XH/Ht$0H=h. HD$XJvHD$XIHH|$0H/HD$0H|$X7UH|$XH/tuLl$UAE1HD$X_H̜H5 _H8uH$7L$@Ll$UAAR1\Ll$UALl$H|$PUA޲Ll$UA鬲InE1E1;TA鍲E1E1SAwLl$OVAbI}oH|$0HbH/HD$0II|$魳H@`HteHHtYLT$LT$HItEHI9E]LLT$ ;~ImLT$ HD$LLT$ LT$JLT$H1HEH5%H8LT$HH5.]H8\6H@`HthHHt\LIHtOL9xu-L}ImILHD$ LT$H5HSDIHuPHBHH5aH8'ARH|$`鐵H|$X.HH5P\H8EH0HH5H8HCLT$H5odH8oLT$HH5[H8OLl$WUAE1E1SAuIff.fAWIAVAUATUSHHH- LnHDŽ$H$HqIIMH@H 0HOHL LOL@HHAUHH5dH81WX^ZH ΐ2H=1VHĘH[]A\A]A^A_ÐHn LcHD$PLHD$XHD$`HD$hHD$pHD$xHDŽ$I$HEDIHH* I|$H9t:HXHHqH1DHH9H;TuHH5" LH-HH\$PH-HCH5T HHH-HD$XH|$PH-H/HH|$XHD$PH H9HD$ H9HL$( H;=y &ÅFH|$X fHl$HXH HqH 1f.HH9 H9TuHH5 LH=HH\$PH=H5 H9(HCH;%@H{d(HH HHD$(HL$ HD$hH+ 1HD$PH|$hH;|$ H;|$(#H;=c#Åp>H|$hH/1HD$h+H) H X H9HyFH? HEHH+ H\$PHEHCH5 HHHUEHH\$`H|$PH)EH/j8H VHD$`HD$PHL$8H9HjGAE1HD$XHIFHT$PHt HPHD$PI$NdHK HHT$XJDHELt$XLl$`IlIEHH@H=V!%F1LLHHKH\$hH|$XH/9HD$XH|$`H/9HD$`HD$hI,$HD$w9He' H  HD$hH9HEH HHHHp H\$`HDEHCH5G HHH JHD$XHJH|$`H/^<H|$H59 HD$`HGH@pHDH@HDHH\$`HJHD$PLd$XI|$H;|$8HH5 H9>>LHAkIH|$PLd$hHt H/)@HD$PH|$`H/=HD$`H\$hHfHH|$XH/=ML% HD$XH\$hHD$hMuLLIHNH@HHhALLLIHUML% LL$MuLLjLL$HHMHPHH@LL$LLLL$HHD$XHVHPHD$`H;T$8@HGHD$`H@HWHHH|$XHT$XH/OBLd$`Ll$XM@I}H5RH96LL$LL$6LLLL$ziLL$H|$`HD$hHtH/BHD$hHD$`HMH|$XH/?HD$XH|$hH/?Ht$xH|$pLL$H$HD$hH|$LL$HIKIMHl$Lt$ILL$LLHL9iHHD$hHKFHD$XHHKHD$hL-LHD$hHFLn IFIEH@pHGH@HGHD$hHGH|$XH/'AHT$hLHHD$XPH|$hH/AHD$hLHD$hHPzHD$XHHAPHD$hLn LIEHFIFHD$hH@pHKH@HKHD$hHLH|$XH/FHD$XH-HD$XHPHD$`HHOHD$XHT$hLn LIEHFHD$XOH|$`H/tJHD$`H|$hH/iKHD$hLHD$hH^NTHD$`HHyNHD$hLn HLIEHFHD$h]0NH|$`H/JHD$`IvHl$LL$H|$pHt H/MH5{ LL$(IRHt$ LT$HHHT$@;Ht$ LL$(HH-H@HT$@LT$HHHhLL$ LLL$ HHD$hH?H@HD$`H;D$8>HGHD$`H,HWHHH|$hHT$hH/ LT$hL\$`IzMH5~H9{LT$8LL$(L\$ L\$ LL$(LT$8PLLLL$ +TLL$ H|$`HD$PHtH/"HD$PHD$`H=(H|$hH/HD$hH|$PH/HD$PIGM~HD$ HJ$MHD$LL$(Ld$MIH\$8HMLt$H|$ LHL$HLHL<LLHLLHLI)IuLd$LL$(H\$8IAH-qLM0H=<LL$XLL$+LL$1HLAHCHLL$7H$I)"L$M/I)"HDŽ$HD$0Hl$HH+H\$0oGHH NoHc2o9HCHHHD$XsfDcfDLPSCfDHCHfD#UfD[H|$XLt$0Ll$PHl$Ld$ H/L|$8uHD$XBHD$XHL&HT$PHPHL HHT$XHD$PHB HD$PHH!&HqH5BH2PLl$hHT$PHt$XIEHH%H=:Ht$HT$AHT$Ht$7-LH2HB.H\$`H|$hH/HD$hH|$XH/HD$XH|$PH/HD$PH|$`H/HD$`H5H9m HEH;IyS"H}Q HxAHH\$ H\$`H+HD$`E"MH5 IUHt$HHT$Ht$HH#H@HT$HHHLHH8MH5 IUHt$HHT${Ht$HH]&H@HT$HHLHD$PHH;H@HD$XH;wHGHD$XHHWHHH|$PHT$PH/Ll$PLL$XI}MMH5ixH9 LL$LL$ LLNH|$XHD$`HtH/EHD$`HD$XHH|$PH/HD$PH|$`H/HT$pHt$xIIH$HD$`MlLLCIID$H;u8 H;vH@hH<H@H/LLHD$`HID$H;u H;HvH@hHWH@HJLLHD$PHID$H;>uHT$`g H@hH@H@(H3LLЅH|$`H/$ ID$H;tHD$`HT$P2H@hHH@(HLLAEH|$PH/ HD$PIH$Ht H/r3H|$xHDŽ$Ht H/r3HD$xH|$pHt H/_3H5HHD$p+HD$pH+84H\$pH5H+`3HD$pL7uIL?Sf.GoiHD$ HdiHD$o8H  HIT$H9OHXHm#HqH~1fDH;\#HH9uHKH1s1H5:HRA_AH81Hl$E1LH`HLl$XA_ADHl$E1LL$ LL$HHHt$(HT$HT$Ht$(Hl$Ld$ ImuLHD$PLl$XAb1Hl$Ao&`oNH)$HH$LLL&oH5C&r^ @HFHH$DH?LHt$(HIH@HT$ LT$@HHLLIH2MH5LL$(IRHt$ LT$HHHT$@LHt$ LL$(HHf!H@HT$@LT$HHHQLL$ LLL$ HHD$hH2H@HD$`H;D$8HGHD$`HHWHHH|$hHT$hH/LT$hL\$`IzMH5(rH9 LT$8LL$(L\$ L\$ LL$(LT$8 LLLL$ HCE12IHHH9HuH;Of.HQLL$Ap`H8FLL$HD$hH|$)6HE1LL$迪LL$靽H=HH5;L1AbHt$xH$AH|$p)Ld$E1mLL$LL$ALL$ޠLL$JLL$ʠLL$SLL$趠LL$\觠蝠蓠E1AaAHDH5:LL$A`AH8~Hl$LL$鰾Hl$LL$AaAiHl$LL$AaANE1蜚LL$HH{H\DH5H8LL$H+謟邵HELLL$AfaH8ښLL$HD$XI)_Ld$AE1нHD$HcELAdaAH8茚Ld$LL$鞽HD$`A/cE1K謙LL$HHhHlCH5H8LL$E18HD$hH|$`HAta2詞蟞鍴蕞YE1#HHD$`E1AbAμLL$HzHBH5H8dH|$`LL$HD$hHbZLALd$E1iHl$LL$AaA"؝]HD$`AbE11A%1LLHD$`HHH H@`HHHLHHH9hHGHGHD$HHHMHcH_HcHD$H/_GHH HH\$Ջ_GHH H\$GHD$H5;HHZImL蠜H|$@,H|$@HD$nH|$@xH|$@HD$UdAb.A"b#D:ЖLL$HIH@H5H89LL${HE1HT$XHt$hA*bUHD$`HD$hHD$XL1LLL$IAbjHl$LL$AaAHl$LL$AaAHl$LL$AaAH7H;3@AH5HfH Hl$LL$AaA8AAEHD?H5H8OHl$LL$AaAHl$LL$AaAHl$LL$AaAHl$LL$AaAHl$LL$AaAvHHI98HuL; >&E1AbAdHl$An`ANHl$A`A8E1A|cA$Ap`Ld$I}ܱH>H5GH8诚H|$X齳H>H\$PHD$ H>HD$(霧H>H9HD$ AH;a>EH;?H譑AŅx H\$`AbAE11W1LLL$ GLL$ W1L3Ld$AdaA1LLL$ LL$ H=H5AH8詙4A`fLL$_LL$-LMrLd$ADbA飶L*4H@`H!HHLHHH9huxHCHkHEHHHHcHkHcH+H褗kCHH H׋kCHH ȋkH56HHHmImLKH>HHa'HsLL$LL$鰭LL$ LL$鹭Ll$X酵蒑HuH;H5v2H8tmHHm;H5M2H8ޗAb{I|$ۧAfa H:H5;H8裗H:H5 H8舗H:H5H8mAWfAVAUATUHSHXH;LnH|$HD$@HD$H)D$0HoIuIHF0HD$H](L} LuH H(hE111HALIHH8BHS H(hE111HALHHH8H L(hE111HAHAIH H8EA;D$HH MH9HH4HHL= MIGH5LHH9HHI/H:H ˳H9H1HH!HL=MIGH5bLHHIIHMIHH9I9F SIHE1ۺA A^7I.Ht H+Mt I/Mt I+H ?0DH=!%MtI,$E1Ht HmMImL<LXHH5FLHHV莒HD$0H#Lm@IH/H /HMHAUH4L@Ht7H5]L V/H81܌X5ZH S/ H=!E1$HXL[]A\A]A^A_HD$fDLXLHEH8H(A;E+#L6f..qf(HL$ f.qL$ D$LL$ f.pL$ f(Ff/f/T$f.L$4HD$f(T$ LI襋IHT$ HD$(f(腋L\$(HHD$L\$ dL\$ HIHt$HMLHM56AHH=6jPAWjPSjPHT$`L\$hbHD$XHPHL\$I. I+ H+ I/ I,$t=HmLd$%@Hh HXZHD$L?Ld$DH߉T$DD$L\$T$DD$L\$WLT$DD$L\$L\$DD$T$7L߉T$DD$迏T$DD$ LT$DD$L\$蚏T$DD$L\$I~IH@@JcHHF0HD$HHE(HD$@HE LHD$8HEHD$0dHItsI~5IHHD$HLt$0L|$8H\$@HD$.@MIH5&LHVJHD$8H HH51LHV%HD$@HDHsfDE11E1ۺ- A66E1E1ۺ. AE6f.M1I$MdHEIlI@LMH=LD$LD$ 1LLAI MLD$ I/EI(+H{H;=X3 H5 4H9t 蹊HSBHJHL$  L{H=聇LLHD$HD$rLT$M<I.rH+L;y2L;O2dL;2WLLT$蚅LT$I*Q HH H9HA HH HHHE HCH5zHHHW IM1 H+?H(H H9H HH\HHlH(HCH5PHHHIHHMHHH}1I9CL\$fDE1ۺA A77=DH=L5:HGLHHHIMH+LH5H81E1ۺA A77E1ۺA A97DHHL\$;L\$EH=HzH5{IfDHuHo)H5H8I.A A{7E1E1L踄(L訄LL\$蓄L\$fHxE1ۺA A<7DE1ɺA A>7D~IH=L5HGLHHIMH&*LH5H81~E1ۺA A<7E1CHLL$賃LL$tfL蘃hLLT$胃LT$fLhfD$}L$HL2 Av6E1DVL$ }L$ H<3 A6E1UDMMƺA E1Ai7L{M LCIIH+ LLLLD$I/LD$ILLT$ LD$vLT$ LD$hL$ D$(|L$ T$(H4 A6E1LD$|LD$HHy&H5H8"LD$MA E1MAi7 @L5L=IFHHP H=G{1LLH~HH'H+7 A6E1f.L5L=*IFHHm H=2{H1LLH(~HHH+z B A7E1:f.L5L=IFHH5 H=Gz(1LLH}HeH'H+ 9 A6E1f.L5 L=IFHHU H=,z?1LLH"}HeHH+; A6E141LHLL$2LL$HIrMC IA71GfLH=HH5HfDE1ۺC A7DE1ۺC A7nDyIH=ѶL5zHGLHH1 HHHH%LH5H81xE1ۺC A7E11ۺ= A6L~H=HH5H2fDE1> A 7I+E1wxHuH"H5H8PI.C A7E1SE1ۺC A7@kxIH=L5EHGLHH HHH#LH5H81wE1ۺC A7? A7 I޺C 1A7E1dM1I$MdIEMlICLM[H=L\$"wL\$11LLAIzML\$I.I+H{H;=]"H5#H9y LHGH\$II/H\$OMv H+L;!L;!AL;2"4LLT$tLT$I*vHD$HH="MLHpIL =LjAQAUjAQUjHT$PLT$XMHD$HH@HLT$I*!L{HSBHJHL$ WLsH= xuLLHD$HD$ixLT$M;I/LLT$${LT$f.L{+LL\$zL\$ < A7MsMMKIII+!LL${LL$HH LsHLT$qzLT$L_zM9zLUÅImZL9E@H 1HhHH!L9\"HD$ H5H@HH"H|$ IM"HCH5(HHH9"IM8"2_IHx%HoH5HHD$^LL$IEL=LMO!H=|LL$ULL$(LL$LLLAHD$XL\$LL$Mb(ImI)cI|$H;=Mt$MM|$III,$0LLLL\$gI.L\$IL I+SMg*I/ImWHΒHp gt \.HEI&DL-L5IEHHH=?T1LLIWM LImA[A1E1vfDM1HL$HHLLlIGLMEH=T1HLAIWMH+MI/3IE3 IEHH H HcH1fDIm HE\$\HH5ۇHH2IMIEp!M}IGHQ H/ HcHf.A]f.oSHPWAEAUHH HHcЉH9tHH5H8Y@AEAUHH HcЉH9tDA]wE}AEII ǐImHEH5HHH_IM^IEH;Hct$\cH;|H@hHgH@HZLIMIm8IA0"IAHD$HH HHcHE}AMcI'RHnIfE}AEII I@E}AYHcHD$H|$LL$QLL$H"HD$AYAAHH HH\$AAHD$f8HH(H@8Hc@ H0DLVHVLxVH=قH*yH5+yI*fDLHLULL$HIfA[;D1A[A%DH=L=ZHGLHHYIMHLH51A[AH81OE1E11A[ALhUOI[A>[E1E11AE1E11A[A\ HHP0H0H;0 HH0HS0H0IEL ILLL$TLL$LTEH\$(H@Ll$0Lt$L|$IILIH@LLI!QIHHI $HMHI$HEL)IuHD$ LL|$Hx HHLAg[A1SE11HL5SIHMIE11A\AmDID$L,IEDLxSH=HvH5vIfDL@SE1O1E1A\ABf.H=ɊL=zHGLHHIM6HL1E1H5A\AH81L@H=HBuH5Cu.IfDMLIf+THt$HHH@HT$(HHOHLHH9&HD$ H5LHt$IVHHT$(SHt$HHHHHT$(HHLHHHHH; V LwM LOIIH/IyH5H9^LL$NLL$GLLLL$ I.LL$IMy I)_I+H&MIMI} HD$8H9HT$ HD$H\$@Ll$ HHHl$HHT$HT$0HD$(HHHHt$0HD$ H0HD$ILl$(MxiH\$0HH|$LIMHL$LLHL4LRHLLRHLLRH)IuHD$ Hx HHHD$ HPHHHH(HB(H0H9;H\$@Ll$ Hl$HH|$8bKHCL=vLMH=pI1LHAHD$LL\$MH+I+LO8tHH(H@8Hc@ H0=HHP0H0H;0bHH0HS0H0H\$(HLl$0Lt$L|$IHHIHLHKIHHI $IMHI$IEM)HuHD$ LL|$Hx HHOLLLMLL$HHE1E1A?[AE11A\A!fH=L=zHGLHHIMH6LH5 1A\AH81HE1@M1E1A\A3HIcLGHcЉH9H&HHqGI21A:[AuDI[HM{HII+, HHLGH+IHMDMlIE&LFICfLL$A[`GLL$HH#H5dH8MLL$fE1E11A<[AM\$MM|$III,$ L\$LL\$HH L[L1LzKIHg1Ac[AHLL$KLL$LK"LA[A1KE1LLL$ELL$HD$PLK^A\A1E1FKIH0HcI*@H+(H@(HI0L@(L;(}HD$ HcIH(LD(H0IH0HcI+DH+(H@(HI0L@(L;(}HD$ HcIH(LD(H0DIMIA\E1A1E11A]AaDIH|$ H58tHGHHIMI|$H;= Mt$MM|$III,$ HLLI.I M>I/E Im- HE,L{IL\$ DL\$HHZHH5 A\AH8iJL\$CHhHD$HMH5˯A\AH8'JIL\$1cCI1A]AA?[E1E11AOLHKHIIH HLBI,$ILHD$hHLL$jLL$BLL$HIHH5A?[AH8QILL$E1H(H+0HC0HC(H01E1A,]ARBIH(H+0HC0HC(H0H5H9L\$DL\$HCH5!LM+H=L\$Ht$8[AL\$L\$(1Ht$8HAHD$BDHD$L\$(HIH|$H|$IILA]E1AL1L9FIHF1A[AH|$ H5pHGHHIMHEH5AqHHHIML\$FIL\$HH{H5rHL\$HD$HLL$L\$G ICL-}HHH=LL$L\$?L\$LL$>LLLIBML\$LL$GI+ I)l HI9D$ Mt$M M|$III,$LLLsI.HBIm_ HI/H+HEHELL$E11A"[H]H5H8FLt$LL$E1AHSB3HJHL$(  LsH=3L\$>L\$uFL\$81LHD$(HD$AHD$L\$8HCL\$>L\$HIA]HIAE1 HEHHh HLw=H+IHCIIAHY  MAH=WLL$(L\$LD$@=L\$LL$( LD$@LL$8LL\$(LHD$@HD$L\$(LL$8HI.1LHD$8LL$(L\$7CHD$8LL$(L\$IIAHI  MYH=LL$L\$@HL$8HHGH+1A`]AL xM HxI9HXH]HrH~1fL;LHH9uHIILH5'HWA>]AE1H81*;E1HH5:H9tF=u=HLMvIAr]AIq;HbIT$BtHZ  Ml$H=~:LHMIs=M:HHE11A\AAt]A:IH4L?H/L?LL\$?L\$::I_HL\$?L\$LHD$(L\$?HD$(L\$g1E1A[AMAw]E11A*LL\$>?L\$HLL$(L\$"?L\$LL$(E11A[ALL$>LL$TA[A1E1LA[E1E1AH5 H9txL\$;L\$ueLLL\$M7L\$IU8I9HHHH5A[AH8j?]IT$BtLr E Ml$H=L\$8L\$T LLAI ;ML\$ IMHIL=1L=H/A]AE1HL\$=L\$M1AD^A'fDLX=LK=H>=L1=fL$=tLL\$=L\$LLL$L\$]E1AH84LL$e1E1Aa\A 71E1A_\A !-I-L\$LL$A\HAHH5ÙH8+4L\$LL$A\AE1xE1LL$L\$a-L\$LL$HHH5`H83I.L\$LL$LLL$L\$r2LL$L\$L&LL$,LL$HHH5H8b3I.LL$LLL$2LL$1,A\]AHH\H5H83k,L\$HuH2H5sH82L\$I+QA-\AE1E1dAd\A 1E1?A\E11E1A5+L\$LL$HHSHH5Ad\A H8I2L\$LL$ME1E1Au\A HHI9qHuL; _H+A]A'SxME1A-\As/+HH/H5H81+HVHH5H8w1;H@`HHHLHHH9XuzHGLIGHHDHcHDAMcH//DGII IDGII DH5}HHnI,$Li/H|$Z)H|$I|H|$sH|$Ie1HL\$.L\$ILL$)LL$HHH5H80LL$H@`HHHLL$LLL$HIH9XIEIEHD$HHHHcHA]HcHD$ImLLL$B.LL$A]AEHH HH\$A]AEHH H\$AEHD$H5HO|LL$HI>I,$LLL$-LL$LLL$'LL$HD$FLLL$ýLL$HD$*HH56H8.L\$*ME11A\A*ME1xH@`Ht]HHtQLIHtDH9Xu"LI,$L,H5HG{IHu.u'H HuH5UH8-LLL$AE1,LL$E1YA]KHAF\AE1H8+HH5 A\AH8i-E1A'A]1F1A]A3ME1A\AA]A' LL$y&LL$HHtH5TH8,LL$I+A]AL5(&HH(H5H8,AA]1yAWAVAUIATUSHH(H LfH$HL$HL$HIuXHvHH(L[]A\A]A^A_sH'H5)SHIHVIN*H$HLcDHH]HH5?ATL AH iH81$XZZH &H=谼H(1[]A\A]A^A_HMLIzHFHH$R&IM~IKL=IHH0HVq)HtHIHHMuM~-HLLHH5Yy Z#H4$HT$HL$|DAWfAVAUATIUSHHILvH-fRH|$ H$HQH$HD$XH$H.Q)$HD$`H$HIQ8I ILID$(HD$Ml$ Mt$IIEHEHPHUL%XI9HH9]I9\$‰@ } `A|$ lHUI;T$HEIL$H9@H@t HDE A|$ D8[A ILMH@ $It$Hȃ3V7A >9HtLH'HEHHEH Hd_H HH9HH|HH# HL%hHMID$H53YLHHIM I,$IH;=H5oH9t $- IWB Lb I_H= JHLAHHD$#HI/I. H`^H GH9HgHhGHHL%TGMkID$H5/XLHH IM~I,$I{H;=H5kH9ZL$#L$ELLL\$蕢L\$H$MH<$b`MyfDIHF8HD$`ID$0HD$XfDH;-y[SL=NL;=]I9_LH5"IHX^H;L;%heL;%XLI,$AQEaLt$ADHD$ E1E1E1HD$E1E11HD$HE1HD$@HD$PHD$8HD$(HD$0HD$H$HHmHLD$xT$pLT$hLL$`L\$XP$LD$xT$pLT$hLL$`L\$XCL;%uucLH IHQH;PL;%&u L;%I,$DEf.L=LI9H9]I9_„  } .A .HUI;WHEIOH9@H@tHu|DE A D8u]A 3LMH@ 3IwHȃ@8:A >9u#H1LH"fL=SI9H9]@I9_@} d6A ;6HUI;WHEIOH9@H@t HDE A D8A 0:LMH@ :IwHȃADA >9eH3L1H!HmuH!8fISBLb eMsH=*L$L$L\$LLAHH${HL\$I+ Im HXH BH9H0HAHHL%AMlID$H5`OLHHIMI,$<H|$H5PHGHHIMfH'I9GuL\$ L\$HIE1E1E1L,$1HD$ ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$fMt I+Mt I/Mt I(KMt I)lMt I*H SDH=dE1ܱMt I,$,H $HtHHD$XHHHt H+H\$HtHH$HHHL$0HtHH$HHHt$(HtHH$HHHT$8HtHH$HHH\$PHtHH$HHHL$@HtHH$HHH|$HHtHH$HHHt$HtHH$HHHT$ HtHH$HHH\$HH$HHImHĸL[]A\A]A^A_HHD$H8LLMzHD$H|$TMI/LI.LDLM1M\HTHIDIELMH=ރI&1LLAH>H-'I,$ImH;HH;CH;6HnAŅ H+EHqTH r=H9Hh)HY=H*HL%E=M|)ID$H5JLHH%+IM*I,$H<$H5QLLL$HGHH+LL$IM+HI9A-LL$ULL$HIDL,$E1E11HD$ ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$~H=SL=GHGLHH IMHNLH581H818Lt$E1E1HD$ E1ADDHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$HmuHH-BPL%3AHEHH&H=c.1LHIYMt LvI,$mLt$E1E1HD$ E11A2DHD$E1HD$HHD$@HD$PHD$8HD$(HD$0HD$H$H;-uL;=pDLhFHX+LHH8H(HHHH HH(9fDHDHRL׉T$XT$XLljT$hLT$`LL$XbT$hLT$`LL$XLωT$`LT$X7T$`LT$XufLLD$pT$hLT$`LL$XLD$pT$hLT$`LL$X DLLD$pT$hLT$`LL$XLD$pT$hLT$`LL$XDLtDLL$L$PLp3L`IIHJcHHF8H$ID$0H$ID$(H$ID$ LH$ID$H$ HIH|JcHLHH5^DLHHV.H$HMt$IH QHSAHMEOD@HHH_H5AVL H81yXCZH H=E1wfH A뜐1#fLLH=IBH6H56fINfDH-iKL-b<HEHH5H=/|^1LHIMALrI,$/L,$AEE1E1HD$ E11HD$E1HD$HHD$@HD$PHD$8HD$(HD$0HD$H$fH Lt$E1E1E1HD$ 1ADDHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$uILt$ME1E1HD$ E11E1HD$AFDHD$HHD$@HD$PHD$8HD$(HD$0HD$H$L=DL9I9_„L;=ru @LHOIHRH;H;L;%(L I,$HLt$A DDL I,$AufDLE Lt$ADHM0LMHA@LEL1E1Lt$E1E1HD$ A2DE1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$Z@L,$HAD HFLH$,HH5BLHVfH$HX/HHLH$L$L$H$HD$H$HD$XH$HD$`H5i;LHVHtH$HH~H5xBLHVHtH$HH^H5 :LHVHH$HHH#H$LLLֲH5~jCzW H$H1HLt$E1E1E1HD$ 1A.DHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$_ IL,$AEE1E1HD$ E11HD$E1HD$HHD$@HD$PHD$8HD$(HD$0HD$H$fEfMGMeMgII$I/tLLLL$芕L$HD$I(L?uf.E1H=;H/H5/覠IfDHD$ E1E11HD$E1AbDHD$HHD$@HD$PHD$8HD$(HD$0HD$H$@H=9FL5:HGLHHA&IMHvLH5`1AbDH81ZE1E1E1HD$ HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$fDMH$E11HD$ E1E1E1HD$AdDHD$HHD$@HD$PHD$8HD$(HD$0HD$]fDI1LL HHHD$ E1ME1HD$MHD$HHD$@HD$PHD$8HD$(HD$0HD$L,$E1H$AD@Lt$E1E1AUDHD$ E11E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$+@McMMsI$II+LLLI,$H$L f.KE1E1E1IH%Lt$1E1AUDHD$ HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$BH ,L H=Y7H+H5+vIfDI,$DL @LLL$ LL$UL,$E1E1E1HD$ 1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$FH=AL-r6HGLHHN&IMHLH51ADH81L,$E1E1HD$ E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$xf.L,$ME1E1HD$ E11E1HD$ADHD$HHD$@HD$PHD$8HD$(HD$0HD$H$f;IHD$ E1AsDHD$E1E11HD$HE1E1HD$@HD$PHD$8HD$(HD$0HD$H$FfDL,$E1E1E1HD$ 1E1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$D+IL\$6L\$HI%E1E1E1E1HD$ 1E1AsDHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$#MGM~MoIIEI/LD$(L\$HL\$LD$(HItMD$@fDH;-fDMͺ1M|H=HIDIELMH=laR1LLAHVHI,$ImH;`AH;5D H;ګHAŅ]H+EHD$H;,H@IHx!HL$HH@HH|$H5/HGHHHH/HHD$(HlH+H|$(H<$H5?/HGHHHHMHIH{H+IH-:L-f+HEHH2H=Ck<1LHHH=H#aH+)L,$AEE1E1HD$ E11HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$EH;H9-HXHtH; H; HdD$hH+L$hDIT$HBpHH@HH5&LHH|6HCHD$Hr H+yH|$H5g)HGHH!IMN!IAH;sH;eH@hH%H@H%LL$L1LL$HH%I)5Ht$HV HFHHH9H9HHVHHHFH+H|$ H5(HGHH'IM'IxH;=ڣ)MpMMhIIEI(lHT$LL8I.IM=ImIALL$LH5l(HH*LL$HHi*I)H|$H5'HGHH+IM*IAH;H;H@hH",H@H,LL$L1LL$IM.I)HH9C%LKM$LCIIH+LD$0LL$ BLL$ LD$0HHD$L$LHHHJ$HHDL|I@LM&H=cLD$ LD$ V11LHt$AHmHLD$ 0HL$HHD$ HH+I(H<$H5-HGHHO/IM.H3H H9H.HH1HLsM-ICLD$0LL\$ H5+HH0L\$ LD$0HD$H|$0I+o HI9@rMxMeMpIII(&HT$LLOI/I''HL$HHD$ HHM 5I.#H $HHD$HH"H5#HY5^HD$IH=H#LHH#IGHH=&1PIHu<IH$HI\0I@L5R#L$LHLHOL$HD$H|$NHD$H84I(4HD$H |HH9HANLHIXwLIMMH)W4I@H;3KIPH?I@HD$0I@ HD$(I@(HD$8HD$0HHD$(HHD$8HI(4HD$HHD$@HD$PL|$XH5(LW9#H5*HW`G#H5M!LWBt"H5#LWXFH5!HxW<HQ0H@5H9(WHHWHL=MWH5O*LEIHWI/<H/H H9H&THHTHLM]TH5(LL\$ L$%EL$L\$ HISI(,<H|$8GUH5s*H|$8LT$ L$DL$LT$ HITH|$(cTHt$(HLT$pL\$ H$L$L\$ HLT$pISI(WHI9BELT$xLL$pL$wL$LL$pHHD$ LT$xELE1E1E1HD$A?HHD$H$9DHMML,$ADE11IHL,$E1E1E1HD$ 1A1EHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$+DD$h4@HD$HHFH5\MH8E1ME1HD$ HD$HD$HHD$@HD$PHD$8HD$(HD$0HmHLH0HVHHKH$L$L$HD$H$HD$XH$HD$`.fDLL$L$wHJL=I,$Lp1LLHHOMML,$E1HD$ E1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$1A >@HCLIHLD$LD$L1H,IHLt$E1E1E1HD$ 1A.DHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$eH=HH5趄IfDLL,$E1E1E1HD$ 1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$H=9*L-HGLHH}IMHvLH5`1ADH81ZL,$E1E1HD$ E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$f.L,$ME1E1HD$ 1E1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$TDIL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$f.H;A >HCLI4HLD$LL$eLD$LL$LL$I6L,$E1E11HD$ E1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$L,$HAEHD$ E1E1E1HD$E1E11HD$HHD$@HD$PHD$8HD$(HD$0HD$H$IO0IwH@HE&HM0LMHA@LEL LLL$LL$LCIMYMMiIIEI)VL\$.L\$HI[M\$H-Z$L-;HEHHH=U{+1LHHqHHJH+ L,$AEE1E1HD$ E11HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$HDCL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$`H'LKILLD$(L\$L\$LD$( MML,$ADHD$ E11HD$E1HD$HHD$@HD$PHD$8HD$(HD$0HD$H$L,$HADtL,$HAELfHHD$HMML,$E1HD$ E1ADHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$Lt$E1E1HD$ E11A.DHD$E1HD$HHD$@HD$PHD$8HD$(HD$0HD$H$AH5dH9tNLD$ LD$u;Ht$LLD$gLD$IMHzA >IPBtLr MhH=7QLD$LD$ LD$ LHt$AHD$LD$ LL$MM^LL$LD$ HHVHD$L,$E11HD$ AAFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$fHCLI(HLL$LL$IAHHLL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$4HA >HCL@IHLD$LL$LD$LL$H3HWHRAF1H5qH81L,$E1E1HD$ E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$HIIO0IwH@HEHM0LMHA@LE1HD$IH0HHAIIHD$HIH|$LD$LD$LLLD$vLD$LKIL,$E1E1AEHD$ HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$gLD$H9HrHD$ E1E1E1HD$E1HHD$HHD$@HD$PHD$8HD$(HD$0HD$L,$1H$AELAE1E1zLL\$jL\$HAE1PL,$E1E1HD$ E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$Ht$LLD$ ^]LD$ IM1LH!IH>L,$E1E1E1HD$ 1AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$[DHLD$ LL$LL$LD$ !LHLD$ LD$ L,$HE1E1HD$ E1E11HD$HE1AFHD$@HD$PHD$8HD$(HD$0HD$H$HL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$A >߻MyIHD$L,$E1E1HD$ 1A$FHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$釽I&H5M H<Ja IH*H LL$HI@H HH= 12L$HI)I(YH5 LL$AL$HHD$P.H8?I+OHD$PH HH9H'L|$PLLYMIM&I(# ICH;3!ISH&ICHD$(IC HD$0HD$(HHD$0HI+;HD$HHD$@HD$8HD$1HD$IH>HH7IIHD$HIH|$LL$LL$L,$E1E1AEHD$ HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$ALL$HHLLD$ LD$ zHAE1L,$E1E1HD$ E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$鋺1LHHHL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$fDHD$ E1E1E1HD$E1HHD$HHD$@HD$PHD$8HD$(HD$0HD$L,$1H$AEƴ1LL$0NLL$0HHD$ILHLL$8LL$8HIHD$0HI*H|$LL$0LL$0HD$L,$E1E1HD$ A&FHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$霸E1HD$L,$1ۺHD$ AkFHD$HHD$@HD$PHD$8HD$(HD$0H$HD$#jHD$H7I1H1HLL,$E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$~LL$QLL$HHD$IHHLL$0LL$0IIHD$HIH|$LD$0LL$LD$0LL$VIxHD$L,$E1E1HD$ 1A3FHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$醶L,$HAEHD$ E1E1E1HD$HHD$HHD$@HD$PHD$8HD$(HD$0HD$L,$1H$AEB1LLD$ 'LD$ HHgHD$L\$E1E1L,$E1HD$ AvFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$:L"E1H5HL$3L$H|$H'HD$HHHD$ H5H|$ L$"L$HH'HHfL$HIHmH|$LLD$XL$L$LD$XHII+=H+4H|$L$L$HHH5OHL L$HmHD$ILLD$H$dLYI{lHHN L,$E1E1E1HD$ 1AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$vHD$L,$E1E1HD$ ADFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$OLL$HHD$L,$IE1HD$ 1AGFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$zLt$E1E1E1HD$ E1E11HD$ADHD$HHD$@HD$PHD$8HD$(HD$0HD$H$IH|$CI91LHHH'L,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$Z1LL$ 0LL$ HHD$Ig$LHLL$0zLL$0IIHD$ HIH|$LL$ LL$ IHHLL$HICHHH=1%&L$HIMI+H5lL<5HD$@HH8bI/KHD$@H uHH9HiL|$@LLMMHD$HH|$HI+HD$PHD$8HD$(HD$0HD$E1HAF1L,$E1E1HD$ E1HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$fL,$AEE1E1HD$ E11HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$[HD$HL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$eHD$L,$IE1HD$ 1AIFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$HD$L,$E1E1HD$ AFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD${H=HLD$H5^LD$IfHD$L,$E1E1HD$ AFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$۬H<$$IHD$ E1E1E1HD$E1E1HHD$HHD$@HD$PHD$8HD$(HD$0HpH52ADH8QMML,$HD$ E1E1享HD$HD$HHD$@HD$PHD$8HD$(HD$0H$RLD$ HHD$0HpH5Q2LD$XE1AvFH8HD$E1E1L\$L,$HD$ HD$HLD$XHD$@HD$PHD$8HD$(HD$H$HD$HD$L\$E1E1L,$AvFE11H$HD$ HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$鞪 LD$0L\$ HD$HD$L,$E1E1HD$ E1AFHD$HHD$@HD$PHD$8HD$(HD$0H$HD$H=pLD$-LD$I.H|$L$L$HD$L,$1HD$ E1E1AAFH$HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$銩HD$ E1E1E1HD$E1HHD$HHD$@HD$PHD$8HD$(HD$0E1E1E1MYL,$E1E1E1HD$ AFHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$駨HlH5+/1H8Lt$E1E1HD$ E1A.DHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$ L,$AEE1E1HD$ E11HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$騧HD$HL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$Lt$E1E1E1HD$ E1E11HD$ADHD$HHD$@HD$PHD$8HD$(HD$0HD$H$1LHHHLL,$E1E1E1HD$ AEHD$HD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$L,$ME1HD$ E1AFHD$HHD$@HD$PHD$8HD$(HD$0HD$H$HD$隥E1E1E1E1M߽HL$LL$L;FH|$L$(L$%HD$E1E1HD$ AFE1H$HD$HD$HHD$@HD$PHD$8HD$(HD$0HD$ڤLHD$HHD$@HD$POHD$ E1E1E1HD$E1E1HHD$HHD$@HD$PHD$8HD$(HD$0H5&HL$"L$.sH|$0-HH QH9Hc-H8H7-HH-$H,H5|HL$L$HI,Hms,H|$(,HL$(H-iH9A+HAH+HHL$ HhI9C*Ht$ LLD$XL$@L$LD$XILHL$ HH$HH>*M*Hm)H|$0LLD$XL$4L$LD$XHHD$ )I*LL$L$H9'X-HH4-HL=M,H5NLHD$ H,I/-H|$(#H|$`pIHF-H|$(1HIH,I/HD$ H gH9H+ L|$ LL$Le?L$LII+tMH)LL;fL;f'L;sgLL$L$A? I*( EHfHI*Lq9gL\LOL|$(HD$HHD$@HD$PHD$(HD$L\$8E1E1Hl$0AGH$LuMHMIHHmHT$(HLLD$ H $+I.H $LD$ ILLD$XL\$ H $芥LD$XL\$ H $HJH BLD$XE1H51AYIH81zHD$E1E1LD$XE1ۺHD$ H$LD$E1销HLD$ H $H $LD$ *LL$L$HD$E1LD$AVIHD$ E1H$HD$E1LD$ATIHD$ E1H$鸄H=L$ZL$I%H=HH5L$5L$IHILD$XHDFH5j0ASIH81JHD$E1E1LD$XHD$ H$LD$E1H=THuH5vL$m5L$I˫HD$E1E1HD$ AHH$HD$頃HD$E1E1E1HD$ AHH$HD$lH=L$,L$IJHD$LE1E1HD$ AHH$HD$~HD$`HXHE1AHH?H5)/L$H81L\$XL$HD$E1L\$XLD$`HD$ LH$E1HD$~HD$LE1E1E1AHHD$ H$HD$}HGHeDL$E1H5.L\$XAHH81bL$E1E1HD$L\$XHD$ HD$LE1H$t}HD$E1E1E1HD$ E1HAHH$HD$:}LpHMHHIHHH$HHLHLL\$ H $'I.H $L\$ ILLT$`L\$ H $KLT$`L\$ H $mL0HD$E1E1HD$ AHH$HD$(HL\$`H $H $L\$`MH=DIpH=0HaH5bM2INHD$E1E1E1HD$ AHH$HD$鐀HD$E1E1E1HD$ AHH$HD$kE1E1IHLD$ L$LD$ L$RHD$E1LD$E1E1HE1AfIHD$ H$V{HD$E1E1HD$ AGE1H$HD$HL$蚟L$ LL$HD$ 耟LT$pLL$ L$=E1E1L逨LLD$hLL$ L$IL$LL$ LD$hHDH;H5a+E1AzHH81>HD$E1E1Hl$ E1E1ۺHD$ H$HD$TzH|$L$ʞL$[HD$L|$0E1E1Hl$AvGE1HD$ H$HD$HD$HHD$@HD$8HD$(HD$0HD$yHD$(HL$HH$HHL$˜L$H=HT$(H:H :9LD$XH5#A~GHHEHIBH81HD$E1E1HD$ LD$XH$HD$HD$HHD$@HD$8HD$(HD$0HD$}LiHD$E1E1E1HD$ E1AnGHD$HHD$@HD$8HD$(HD$0H$HD$}ISHICHH@HL$(HD$0L$L$HD$E1E1HD$ A~GH$HD$HD$HHD$@HD$8HD$(HD$0HD$|HL$PL$H=HH5L$-L$I H5H=L$L$HHD$ IHLD$XILD$XH$HIHD$E1E1LD$AHE1H$HD$ {HD$E1E1LD$AHE1H$HD$ {HD$E1E1LD$AHE1H$HD$ i{H|$ AH+HD$E1E1LD$XHD$ H$LD$E1*{HD$E1LD$E1E1AHH${TLL$L$HL$謚L$LH$藚L$HD$Hl$ E1E1HD$ A[HH$HD$uHD$Hl$ AZHH$E1E1E1HD$ HD$uHD$Hl$ AYHH$HD$Hl$ E1E1E1AWHHD$ H$HD$LuHD$E1E1E1HD$AOHH$yLL$虙L$H|$ LT$hL$}LT$hL$HD$LE1LT$ E1AJHHD$ H$HD$tHD$E1LD$A;IE1H$@yHLD$ L$LD$ L$ HD$E1LD$E1HD$ IE1A8IH$xHLD$XL$诘LD$XL$MsMXIkIHEI+HT$ LHL$I.L$IALLD$XL$GLD$XL$"HLD$XL$ufHD$(x轗L$LD$XHD$ H|$ HD$E1LD$E1E1E1A)IH$wLL$͗L$GH|$(L$LD$XHHD$ tHXQH|$(LD$XL$;LD$XL$HD$ iH<H 4LD$`H5#L\$XE1A(IH81vHD$E1E1LD$`L\$XHD$ H$LD$E1"wHLD$ H$LD$ L$nHD$E1LD$E1HD$ E1E1A%IH$L$H5>HDŽ$HDŽ$L9tIFH;1FI~H\$ AHH$H+?HDŽ$EWHH )H9H]HH_HHH$H\HCH5ضHHHU_HH$H^H$H/:L$HDŽ$I}H;=0bH5y1H9:#:HLHDH$H$HD$Ht"H\$HHD$HHDH$HDŽ$H$H dH/@H5H$HDŽ$H9y?HGH;&0^gH]?HD$ HH$H/ BH$H;|$ HDŽ$H;=G/>H;=/>蚂H$ÅeH/^CHDŽ$JL%L- ID$HH2H=@諃41LLH衆H H$HH$H/sHDŽ$E1HDŽ$HD$PD$ bD$8#E1E11HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$f.ffA.Fz fDH-H -HHL$ @H$ÅD$ E1E11HD$PE1E1H$HDŽ$E1D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$LLLH$IHHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$L<$D$ D$8@ffA.Fz fDH+E1H+HHD$ H9+A`fDIPB?HZ VMpH=LD$8LD$VLLH+HLD$dH$I,$;H$H%mI(o9L$I~H;|$HxAL$L95L诂5LL<HH$H$H/8H$H$HDŽ$|AH/9H$L$HDŽ$HDŽ$Ht H/:H$HDŽ$Ht H/:H$HDŽ$Ht H/:H5LHDŽ$腁H$HHYSH;D$ H;)'5H;X*5H}H$AąSH+:HDŽ$E HHH9Xn]HyH_HHeH$H\HCH51HHH_HH$H$H^H/6=L$HDŽ$I|$H;|$HmbL9=L聀=HLHH$H$HD$Ht"H\$HHD$HHRH$HDŽ$HcH$H/5=H5H$HDŽ$H9 9HGH;(4hH8HD$ HH$H/Z=H$H;|$ HDŽ$H;='<8H;=M(/8zH$ÅdH/>HDŽ$L%L-tID$HHH= |81LLHHH$HxH$H/pD$ E1E11HD$PE1E1H$HDŽ$HDŽ$D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$LӀzfDÀLfDL谀'L<$E1E1E1HD$P1E1H$HDŽ$D$ D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$fDHt H/Mt I,$9H$Ht H/RH$Ht H/kMt ImMt I)Mt I+T$8t$ E1H H=\H$Ht!H;#%tH@@(/I/7Mt I.XHt H+iHL$HtHHD$ HHH$HtHHD$HHHT$HtHHD$HHHL$(HtHHD$HHHt$@HtHHD$HHH\$PHtHHD$HHHT$XHtHHD$HHH$HtHHD$HHHt$xHtHHD$HHH\$HHtHHD$HHHT$hHtHHD$HH~HL$pHtHHD$HHoHt$`HtHHD$HHH\$0HtHHD$HHqH4$HHD$HH(Ht Hm(HT$HtHH$HHZHL[]A\A]A^A_DL|L|VL$L$|L$L$fDLL$L$x|L$L$L$L$K|L$L$fDL$L$|L$L$kfDLL$L${L$L$HLL${L$7L{H{H{Hx{Hh{'HX{6HH{HH8{WH({fH{uH{HzHzHzsHzHzHzHzHz HD$H;\ nHvHD$HLHHH9XQHHF*HHlH$HPHCH5أHHHQHH$HQH$H/]1HHHDŽ$H9XTHڗH}WHL%ƗMSID$H5LHH=WIMPWI,$}3HH oH9HYHVHZHL%BMXID$H5LHHwZHHZI,$5HjI}HD$HH9]H5H9.u-HLHIL$MH+4H$H\I(GH$H5&HGHH_HH^H$H/HL$HDŽ$I|$H;|$H`H5OH9ItIHLIH$L$Ht H/OHDŽ$H+GH$H^H$H/HHD$HHDŽ$H$HDŽ$H@H9t7HXH&HqH1fHH9H;TuHͮH H9HpHHSsHHHD$H$HoHH@H5%HHsIMsH$H/\H|$H5HDŽ$HGHH{HD$H$HKzHD$HA1ҿHDŽ$I9EޅHT$vHT$HI·H$HtIAHDŽ$H$IDHHKDIEHDŽ$LMiH==LL$oLL$XLL$@1LLAIHD$rMLL$@cHD$H$I)_Im_H$H;|$ H;=RQH;=QmH$AŅH/aHDŽ$EHH5ՒH9p(HHHL-MqIEH5\LHHFIMImH!H RH9HH9HjHH%HD$H$HHH@LL$@H5HH`LL$@HD$H$HH$H/ЊH|$LL$@HDŽ$H5ȣHGHHLL$@HD$H$HH$HD$HH9G8Ht$LL$@LL$@IH$H/ HDŽ$MuH$H/JIELL$@LHDŽ$H5HHLL$@HD$H$H/ImHD$HI9AH$LLL$%LL$H$H$H/H$HDŽ$HD$HI)HH$HoIHH;D$ H;FL;-LjAą8ImEH$HH$H$H+H$H/H$H$HH$H/tHDŽ$L$H+IHDŽ$L@H L(hH|$E11HA1AHD$H$HaH$HH$H/LH$HL$HDŽ$H$HHD$HHLH$H;HDŽ$ bH$H5]HGLoHHeHD$H$H eH56H;t$OHH@H;:oHyuHD$xOHD$ HH$HL$HHD$HHPH$H;|$ HDŽ$H;=@H;=@FhH$AąiH/QHDŽ$ElH$H5UHGHHyrHD$H$HqHǺL lH$HD$H$HH/YH$H;|$ HDŽ$H;=KHH;=>HagH$AąyH/jYHDŽ$E Ht$L9HBH5cD$H9pHDHHH0HD$HH$HHGH5HHmIH$MH/U]D$LL$HDŽ$hLL$HHD$H$HD$HI9AsHt$LLL$,LL$H$MH$H/_H$HDŽ$HD$HkI,$cH$H;|$ H;=fVH;= VeH$Aą-H/fHDŽ$EԚHH H9HHHaHL MIALL$LH5HHSLL$HD$H$HI)qH$H5 HGHHۤIH$M H/cH5H$1LL$HDŽ$hLL$HHD$H$ʨHD$HI9AfMiMfMaIEI$I)͇H$LLH$ImMH$H/H$HDŽ$HD$HtI) H$H;|$ H;=ZdH;=ccAą˱H$H/HDŽ$EuD$\IfT%JeHD$H$HHǺHzgIH"H$H/ʒL;L$ HDŽ$AL; D|L; 5|LLL$bLL$AI)H$HD$E H5+H=ğHD$H Ll$LIEHD$HIEHD$PE1E1H$D$ a E1E1HDŽ$D$8<HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$$@LiThfDH=QHbH5cnI"HLH5H81bHDŽ$HD$PE1E11HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$L<$D$ D$8@[bIcHD$PE1E11HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$L<$D$ D$81fH=ɞL-rHGLHH6IML$=HD$PE1E11HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$L<$D$ D$8C@0'H=1HD$PE1E11HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$L<$D$ D$8\@L- L9L8bIFL%ŜHH]H= _u)1LLHbHu_HHDŽ$H$HtH/HDŽ$I.D$ 1+H$Ht H/$H$HDŽ$Ht H/H=HDŽ$^D$8t$ H=!H ]H$H$H$耷H$HIL$HGH;mOHMwMH=ǕLo_IH-I.$<L5JH5 I~H9Ny`ALLIHI,$?I^H@$5EA@E1ycIH1HL`bI,$IkhMIHML@ MtRL;-[IEHtA@b@bIELLLD$YLD$LH]Mt I,$LI.>HDŽ$HDŽ$HDŽ$D$ D$8H$H$H$Eb111 ^H$H$L$H$HT$(L$Ht$H$H|$6H|$Ht$HT$(3MImW5HLL]H$H$H$]HDŽ$HDŽ$HDŽ$H$E1E11H$H$E1-]H$E1E1HDŽ$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$f.IVB1HZ MfH=EZa1LH>]H;H$M#D1H;-q DŽ$HD$ HHD$HHH$HHHmH$0HL$(HD$ H9H; H; fHXBH|$H;=<\3HGH5ˏHHSHD$H$H`RH HL$HH9H?L`M?H@I$HH$H$H/rAL$H5I}H9>/[1/LLMHH$I,$EH$HD$H|$H$TH/?H$HDŽ$HDŽ$HEH;@H;GL`hMXI|$WI$HHHH}HHAT$HD$(HD$(H$HYHt$(HcXHD$(H$HXH$H/CH$HDŽ$HmHD$CH|$0H5CHDŽ$HGHH_HD$(H$H^HL$HH9H{FHhHnFH@HEHH$H$H/GH$H$HH$HmJH$HD$(H|$(oH$H/EH$H|$HDŽ$HDŽ$H5HD$(HGHHpHD$@H$HAp\HD$@H$HlqHt$(HH$Hp^IHxHXH5HHD$0^LL$0TH$L$HELM'nH=4LL$0ULL$0&LL$0LHLAHHD$@XHLL$0HD$@H$H$H/cSH$HDŽ$H/1SHDŽ$I)SH$H5xHDŽ$HD$@HH9pHnxHHHZxHD$XH$HHH@H5fHHDIMH$H/+[LL$0HDŽ$ZLL$0HHD$XH$3HL$@LL$0HH$HH ]LL$0HHD$XH$/HH5HLL$0\LL$0NJHH XwH9HH?wHۜHH+wHD$XHH$H=HGH5/LL$0HHLL$0IH$M!H/vH5NH$LLL$0HDŽ$[LL$0ImH$H$LLL$0xLL$0HHD$XEI)рH$H/H$HDŽ$H/~HL$@HDŽ$HHD$0HH}HD$PHD$XHDŽ$HD$@HD$`HD$pHD$hHD$HHD$xHDŽ$HD$X$BHD$@H1HxH9tHyHHIHt$0HH$HHHDŽ$1L;l$ @Imѡ`HٌH qH9HeHqHHL-qMgH5ՄLHD$0H$HImWIHH5H<$ۡIHϬH5HLHD$ (WL\$ wI+DH5J{H$LڠHD$0HH$H/HDŽ$ImϬH<$Ht$@HGH@pHH@HIMYH5wH|$0LL\$ ePL\$ I+GHD$0H$HI6DHHHD$ H9$HHEH qH9H=HpH=HL pM<IALL$LH5R~HH>LL$HD$H$H=I)&1SIH_?HEHhHD$ULL$HHD$H$AHHH59pH9pAH pHDHL- pMAIELL$LH5؀HHYELL$HD$H$HDImT1H$H5LL$H$TLL$AH$H/13L$H$HDŽ$IELMY=H=)LL$HT$KHT$LL$OLL$LLAIHD$mNMLL$~THD$H$H$H/V5HDŽ$I)35H$H/5HmH$HDŽ$H$4HH$HDŽ$HD$@PQfDHH9|HuH;T.eE1'IUBFHZ 9MmH=ڶEJ<8HLH=MH$GH$H$HD$HH$JH=R|轳HDIVB*HZ MvH=JIu&LLHLH#JHHt1HH5&H8PfDH$HHD$ HHHOfDIIL<$E1E1E1HD$P1E1H$HDŽ$HDŽ$D$ D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$MDHD$PE1E11HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8DkMfD[M騿fDGH,HD$PE1E11HDŽ$E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$L<$D$ D$8f.kLfDLXLHHLWH;ALIH$IHVHD$PE1E11HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8oKKfDLLD$3KLD$f0ff.Gf/GfDH!H+I[LLD$JH$LD$IUBHJHL$ s)MeH=%Du/LHD$HIGMDIH E1DH8JJQfD JfDIfDff.G$f/GfDHH IfDHD$PE1E11HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ "D$8!D[CID$ H$H,H/uHHDŽ$H=tHgH5gHwfDkHfDLXHKHfD;HfD+HfDHD$PE1E11HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ $D$8!}DD$ AufDH=1sH-@E1oIVBHZ 1MvH=Au'LLIDMsAHHDŽ$HDŽ$HDŽ$I,$#D$ D$8tfD{F阼fDkFHDŽ$HDŽ$HDŽ$I.#D$ }D$8D$ dD$8@I}HE'D$ #H$LEvEIT$B=HZ 3Ml$H=.?2HLHBHSH$H$HD$H >D;EfDH;1LAH$HHyHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ 1D$8"afMfM{IFI$HH$H$H/v)H$H$L$H$I,$`LCS@D$ ALCHLD$CLD$fCHH$LQ@HD$HH$HCHD$ H9H; vH; H;H$HD$GHt$HHD$(HHI*HDŽ$SH5jH$1?HD$HH$HYHD$ H9@H; @H; t{H;H$HD$WHL$HHD$(HH/HDŽ$dHD$H;GHyH5_H9pjH_HnjHHl_HD$H$HHD$H$HqHH$HD$HH9GrHt$ƾH$H$H/l;H$HDŽ$HD$H|uH$H/QLH$1H$HDŽ$=H$HD$H$H{H/KH$H;|$ HDŽ$@H;=@.H;=N.8ŅprH$H/THDŽ$·HhH|$HH5pHD$PHGHHHD$H$HHDŽ$Ht$HHH9pLZH@H|$H$H2ZHt$HVHHH$H$H/ dH$H$HYH$H$Ht H/`lH$H$HDŽ$HD$H&H/YH$HL$HDŽ$H$HHD$HHIYHvH5;\HDŽ$H9pZH\H*HH\HD$H$HbHH@H5fHH0HD$H$H|H$H/bHDŽ$>HD$H$HH$HH$Hp@HD$H$HHuH /[H9HH[HHL-[MH5ZlLIHϙImoH5mH$LLL$@LL$aI)nH$H$H$ˉH$HD$XHѓH/H$HDŽ$H/H$HDŽ$H/H5gH|$XHDŽ$HD$H$H!HD$Ht$HHDŽ$HH9p(HD$H|$H@H$H HL$HQHHH$H$H/H$H$H衹H$H$Ht H/_H$HDŽ$H$H/`HD$p111HD$hL-XHDŽ$Lt$`Lt$PH\$HL$IH$1LK8IHH;D$ L;%dL;%&dL3KI,$~H5eH|$0TH$H=H$LS9H$H8;H$IHH$L$HDŽ$I@HD$HI9AFIAH$H1IQHHH$H$H/H$H$L$HHLNHD$xH$Ht H/H$HDŽ$H/ʕH|$xHDŽ$H$H/HDŽ$Ht HmwH5aLj6IHH;D$ @H;@L}L;%C?}L1Ņ I,$ŒHpH rVH9HqHYVH HLEVL$McH5miL-H$HH$H/5H$HD$HHDŽ$H9GSH$HH$Ht H/GHDŽ$H$H H/HDŽ$Ht H+OHEH;wH;v<HXhHH{HHCHHHHHSIMoLHj2H$HI,$H$HmH5aHHDŽ$H$H7IHMHD$xHID$6:H$HHaH5aH9H$H$L菃H$H=H$H/!HDŽ$I,$H$H/HDŽ$H$Mt I/HAnH5SHDŽ$H9pHSHHLySL$MMH5^LqH$HH$H/HDŽ$X6H$HԷHEH$Hh8IH&HT$ H59`Ha8{H$H$L!H$HҵH$H/H$HDŽ$H/HDŽ$I,$UH$HGH;vHWHHG LgH$I$H$HH$H/gHDŽ$Ht$hHtHHD$HHH$HL$pHD$@HtHHD$HHH5Y^H|$@HDŽ$諁H$IHHD$HI9@MxMI@IHH$H$H/UH$L腱H$I/&L$MH$H/jH$HDŽ$H/BH5\HHDŽ$׀H$IHvHD$HI9@MMxM@I@IHH$H$H/HT$@H$LLH$I/L$M<H$H/ HDŽ$L$HmH5\LHDŽ$H$H9HL/H$HH$H/IH$HDŽ$H@HhpHHH}=HH$L0HHD$H$LHULD$I(LH$H/H5[LHDŽ$H$HHL,H$HH$H/eHDŽ$H$I.:HD$@ILd$hHDŽ$Hl$xHD$pDHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8闰Hw0NLj0*IrD$ E1E11HD$PE1E1H$HDŽ$D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$鵯H//d1邩E1>IUBHj d&MmH=\)u&LLHX,H)HHt1HH5͕H850fH.LDW.hHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ :D$8"?H=ZHqLH5rL譿HaME18IT$B Lj &(Md$H=r'u+HLAI*MߵJ(IH:E1ƵD$ E1E11HD$PE1E1H$HDŽ$D$8'HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$HD$PE1E1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ <D$8"dL%,&H飠H=|XH[L+'H|$0H5ZHGHH GIMUF*,HD$H$HQHSHH$HBIH$Lp x.HD$H$H QH$H5CUH . EHcH5HH9p%UHHHaHL HM[TIALL$(LH5YHHbLL$(HD$H$HaI)+H$H$H5Za-H$TH//H$LH$HDŽ$wHD$H$H%^Im<H$H/;H$HDŽ$H/:H$HDŽ$HDŽ$HD$@HDŽ$HD$PHD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(HD${hHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)֨H='UHFH5FDHx(IEH$HUIUHHH$H$H/H$L$HHLcH3"H.HD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)}L]'HD$PE1E1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8H=SHEH5E0H鋢DѷHD$PE1E1E1HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ KD$8"HD$PE1E11HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8).H=QH@CH5AC蜶IfHD$PE1E1E1HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8[HmH=P H%H$h$(D$ QE1E11HD$PE1E1HDŽ$D$8"HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$pLP# LC#DCL-#D$ }D$8L#p@H;H$HH!HD$PE1E1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ ND$8"`I黨H=NIzHD$PE1E11HDŽ$H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)kLD$HHHH5H8W"LD$ E1ID$H$H}IT$HHH$H$H/H$L$HHLHTLLL$ LL$HH5GH8!8HD$f.@Qf/@FHH?HD$PE1E11HDŽ$H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)骟H=KH=H5=IVH|$膮HD$H$OHBWHD$PE1E1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8ƞLL$LL$H遥H=JBI@HD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)鿝HUHEHDHD$(HH$麿H#H5 H8Z鄾D$ E1E11HD$PE1E1H$HDŽ$D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$鲜HD$PE1E1H$D$ E1E1H$HDŽ$D$8IHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HLLL$LL$HD$PE1E1H$HD$0ME1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)MeM0MEI$IImK&LHLLD$LD$H$I,$#LLD$LD$ H;UH$HHɭHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8H4LHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)٘<HwMHHD$PE1E1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8)(H$HDŽ$HD$HHD$PE1E11HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ KD$8"5DID$H$HIT$HHH$H$H/&H$L$HyHLI۞E1bH$H|$(HD$(H$͹HEHDHD$(HHD$PE1E1HxHDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$H$D$ D$8CHD$H=BHc3H5d3/Ii'xrLkL^ LQGbE195錦H=AyIHD$PE1E1H6HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(H$D$ D$8CHD$鈔LL$HD$vWòH; \I逰LLLL$LL$HHD$H$HD$PE1E1H&HDŽ$H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(H$D$ D$8CHD${[nHD$PE1E1HpHDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$H$D$ D$8CHD$鹒HGH$HDŽ$HD$H4HD$PE1E11HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ D$8H @E1ffA.EC=HD$ H:(@-HE1E1HDŽ$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(H$D$ D$8CHD$ H=4=Hu.LL$H5q.LLL$IKLL$LL$闢HD$PE1E1HHDŽ$H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$H$D$ D$8CHD$H$E1E1HHDŽ$H$E1HD$PD$ D$8CHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HD$TH$H5&CCH$HD$Hp]H/6UHt$HD$HHDŽ$H9F]HFH$H]LNHIHHD$(HH]H$H]LLL$rLL$H$H$Ht H/^H$HDŽ$HD$HI)HL$@H$HHD$HHPHDŽ$Hl$@HDŽ$H$H5H|$@7AHD$P饳LLD$LD$Ln-H5bH<$AIHdyH,H5H9p yHHxHL-MxH5%LL\$ MAL\$ HHD$0H$.`ImOL\$ 8L\$ HIxHD$@L\$ HIEL\$ HIwHP+H QH9HzH8HxzHL $M6zH5!LLL$ L$@LL$ L$HHD$0H$yI)OH$H5#LL\$ H$L\$ vH/NH$LLL\$ HDŽ$K?L\$ HHD$0H${vH$H/GHDŽ$ImGI,$GL\$ L\$ HIRH$L\$ HDŽ$ID$L\$ HHD$0HH$YHT$8H5#L\$ H$LLL\$ e>L\$ HII+I,$(H$H/ HDŽ$H$HD$0rHHΕH5XH8wH$HDŽ$HD$HmHD$PE1E1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ D$8pLLL$sLL$ |H5ZH|$0mHD$0JDZ~@dIEH$H zMeHI$Im-MAyH$E1E1HDŽ$HD$PE1E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$84OoH5PH=$4KHD$H$HPHKH$H/9HDŽ$H$E1HDŽ$HD$PD$ !D$8UHD$0E1E1HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$~nB L5HD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8+mEJLLHLL$0LL$0HHD$@H$HD$PE1E1H$HDŽ$H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XD$ E!D$8NlLL$LL$鉀HD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@D$ .!D$8MOlHD$@H$HD$0HIlHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XD$ ;!D$8NkH|$HD$@M HD$PHE1H$D$ !E1E1E1HDŽ$D$8WHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$jHD$PE1E1H$HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XD$ =!D$8N(jHD$PE1E1E1HDŽ$E1D$ D$8+HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$wiHDŽ$E1HDŽ$HD$PD$ ^`HDŽ$E1HDŽ$HD$PD$ D$8+LL$LL$uLL$LL$`}HD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ !D$8WlhH$E1E1HDŽ$HD$PE1E1H$HD$D$ D$84HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$gH5H=)lCHD$H$HqDH|$CH$H/-H$E1E1HDŽ$HD$PE1E1H$HD$HDŽ$D$ D$85HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$pfHEHDŽ$HD$PE1E1H$HDŽ$E1H$D$ !D$8RHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$eH骦~jt HD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$D$ !D$8RdH|$0IH>IH#H5TH9pHH;HHHH'HD$HD$H$HHH5H|$LL$HN,LL$HHIYGH$H/3GHlH$HDŽ$HD$HH9B#e}LL$HcLL$HIqdH$HtICHDŽ$H$HcLL\$H$HDŽ$ITEHMLEHMd>:L\$HI9TI+"TH$H/TL;-HDŽ$SH9IEH9LHXH@KHq1H;T]LHH9AKH5H=]9HD$H$H02H":H$H/HDŽ$H$E1HDŽ$HD$PD$ !D$8XgHH5CH89HDŽ$8xH eHD$PE1E1H$HD$0E1E1HDŽ$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8=\H$E1E1HDŽ$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$87[qg&H$E1E1HDŽ$HD$PE1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$HD$D$ D$87ZH|$IlH#LvnH=E>HD$HlHD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ !D$8RYHD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ !D$8R0YHHD$0HD$@NHH$+gLL$LL$\fLLL$LL$fD$ E1E11HD$PE1E1H$HDŽ$HDŽ$D$8HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$ XAL"LLL$0LL$0~LL$LL$dHD$LL$"mLqmH=e;HD$錕H=HH5iHD$hHD$PE1E1H$HDŽ$H$E1HDŽ$D$ E!D$8NHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@V鄛HD$PE1E1H$HDŽ$H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$D$ !D$8RVH=oHH5gIԪHD$PE1E1H$HDŽ$E1D$ !D$8RHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$[UH;2~L.bL!rHD$PE1E1H$HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$D$ T!D$8P)TH=zHH5eHD$X@yH$ME1HDŽ$HD$PE1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$87rSMiMeMaIEI$I)R/H$LL3YH$ImdeLWe間H$E1E1HDŽ$HD$PE1E1H$HD$D$ D$87HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$+RH5DH=.HD$H$HRjH|$.H$H/.H$E1E1HDŽ$HD$PE1E1H$HD$HDŽ$D$  D$88HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$QHD$PE1E1H$HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ "D$8[qPHD$PE1E1H$HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ "D$8[OH|$,HD$HD$PE1E1H$HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ "D$8[OHD$PE1E1H$HDŽ$E1H$D$ `!D$8PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XNLiLHD$WLL$ҐHoHHGHEHH$H$H/,H$H$H1TH$HmH鳌HD$PE1E1H$D$ "E1E1H$HDŽ$D$8[HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$MMLL$HD$`H$E1E1HDŽ$HD$PE1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$HD$D$  D$89vLH=20I_H=HH5]It_HD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ !D$8RKHdHD$`HoHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ "D$8[KHD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8,KJIUHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$8,IH=D-ILHD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XD$ V!D$8PHHDŽ$E1H$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ !D$8RsHLL$(HD$P#H$E1E1HDŽ$HD$PE1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$HD$D$  D$89{GI[H$E1E1HDŽ$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$  D$89FH={*IQH=HH5XIQLL$ LL$ HkHD$PE1E1H$HDŽ$E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XD$ E!D$8NEHD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$D$ ^!D$8PREH|$X谿IjH=(HD$XejHD$PE1E1H$HD$0E1E1HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ "D$8[DHD$0E1E1H$D$ &H$E1D$8XDH<$跾ImD$ &E1E1H$D$8H$E1E1HD$0 DHD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$D$ Y!D$8PCH;qhL6HD$0H$HlD$ &E1E1H$D$8H$E1*CH$E1E1HDŽ$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$  D$89BLMAR*LHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ D$8,AHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ D$8,AH|$_LL$@HD$HMfD$ &E1E1H$D$8H$E1E1@HD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ /D$8,@fLL$@HD$MH$E1E1HDŽ$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ * D$89_?LgMKHGI$HH$H$H/KH$H$LLL$EI,$LL$I{KLLL$跾LL$dKHD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ ,D$8,>H$E1E1HDŽ$HD$PE1E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ N D$8;U=HD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$D$ a!D$8PLD$D$@ʂLgLGgHD$0E1E1H$HD$`E1E1HDŽ$HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ R"D$8^y;HD$0E1E1H$HDŽ$E1HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ D"D$8^ ;H$E1E1HDŽ$HD$0E1H$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$D$ a"D$8_m:H|$謴HD${HD$0E1E1H$HD$`E1E1H$HDŽ$H$HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$D$ _"D$8_9H=OHD$z`1H=HH5JHD$zH$E1E1HDŽ$HD$PE1E1H$HD$D$ - D$89HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$8H|$HD$ixH5fH=ZHD$H$H.H|$H$H/HD$PE1E1H$D$ ("E1E1H$HDŽ$HDŽ$D$8\HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$x7H;a\H5藵ISHl$E1E1E1HDŽ$E1H$HDŽ$H$HD$PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(D$ !D$8L6H|$ LL$@HD$BHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ D$8,5H=7LL$@LL$@HD$AH=HLL$@H5/GLL$@HD$XAHD$PE1E1H$HDŽ$E1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$D$ h!D$8P5HD$PE1E1H$D$ f!H$HDŽ$D$8PHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$X~4H5H= cHD$H$HVH|$H$H/H$E1E1HDŽ$HD$PE1E1H$HD$HDŽ$D$ < D$8:HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$g3LG"^HWH5H8\:E>HD$PE1E1H$HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XD$ c!D$8P2H|$XLL$0I4YD$ &E1E1H$D$8H$E1E1k2άHD$0ZH$HHt$0H$HHu H|$0L;l$ HDŽ$@L;--W@L;-WL|Ņ\D$ 'E1E1H$D$8H$E1HD$01H=HuH5v!CI\HD$oLL$ӷHUH5H8LL$eH HD$PE1E1H$D$ #E1E1H$HDŽ$D$8pHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$0H;UH|$0OIHHD$0E1E1H$D$ 'H$E1D$8D0'HD$PIE1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ DD$8,/H$E1E1HDŽ$HD$PE1H$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$HD$D$ P D$8;.LL$蟮LL$HD$PE1E1HDŽ$HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$D$ ?D$8,*.MiM<;MaIEI$I)vRH$LL3H$ImtM;L蜭H$E1E1HDŽ$HD$PE1H$HD$D$ R D$8;HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$,H$E1E1HDŽ$HD$PE1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$D$ D$83\,HӱHD$PE1E1H$D$ #E1E1H$HDŽ$D$8oHD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$+LL$aLL$ųLOWHD$PE1E1H$HDŽ$E1HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ !D$8X*LL\$ 襪L\$ ?LL\$ 莪L\$ L\$ HD$0E1E1H$D$ 'H$E1D$8V*H=IEUHDŽ$HDŽ$HDŽ$D$ sD$8GD$ p"E1E1H$HDŽ$E1H$HD$H$D$8_HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$\)H$E1E1HDŽ$HD$0E1E1H$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$@HD$(HD$HD$D$ r"D$8_(HD$0E1E1H$HDŽ$E1H$HD$`H$HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HD$D$ k"D$8_(H=a I:jD$ $'E1E1H$D$8H$HD$0'HD$0E1E1H$D$ "'H$D$8'HD$0E1E1H$D$ 'H$E1D$8]'H<$2I]SL,$S"SHD$0E1E1H$HD$`E1E1H$HDŽ$H$HD$pHD$hHD$HHD$xHD$@HD$(HD$HD$D$ "D$8`&}vlLp3mH$H@L`pM<I|$<1OHx;HLLHHD$蟤LD$HI(B;H:H$HAT$HmI:M9HH$Lv@9I,$lL諥vlHUHELdI$m芥\HD$PE1E1H$HD$0E1E1HDŽ$HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(D$ ?%D$8HD$PE1E1H$HDŽ$E1HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(D$ =%D$8%H=WHD$H=AHҰH5Ӱ^%HD$ƳD$ Z'E1E1H$D$8H$H;D$ AH;8EqH;H9dHH$AŅID$ 3E1E11HD$PE1E1H$HDŽ$D$8"HD$0HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$HDŽ$HD$HH9 HuH;@7H {1Ҿ=L cHHHl~HV4HFHDŽ$fHnfHnH.H$flH$HDŽ$ )$foGqH$()$0fH$H$P)$@3H$(HJH$(HHHJH$(HBH@Hx\StHup H%H$2IH=fqAMltL$1H$L CHP`L9H$H~X~;HFxH8~HHn'H;J'H$HH#H$HAHHD$hHA@u HuHIm8HD$0H50HHD$H$HHD$0H5*HH$HHHD$HH9GHoHHGHEHH$H$H/H$Hg HmIMH$H/HDŽ$Im蒋Ld$XHT$PMIHD$0H+T$(MMMLd$hIHhHHHl$pH;\$PcHE111LT$hLL$HH|$LL$HLT$hHH|$H! H9t%HH!I4HHuHIUHIHH!IH:tHH!IH:uHI]L輎 貎D$ %H$H/HD$PE1E1H$D$8E1E1H$HDŽ$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(HD$H+W$@LMMM*L8H$HH5H$H$H/H$HDŽ$HD$Ht>HL$HHD$(HHtHDŽ$|LDH7HD$PE1E1H$HD$0E1E1H$HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(D$ &D$8 諌H|$0HL$XHt$(HH 'IH)WHLHGHHOH0VH5$H81rAXAYHt HmHD$PE1E1H$HDŽ$E1H$D$ %D$8HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(HD$ H8H/1H5H81装0Hf3\prID$ %HD$PE1E1H$HD$0E1E1H$HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(D$ %D$8 1H/H5;H81ɄVHD$PE1E1H$HDŽ$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(D$ $D$8~H L$HD$hlLѫHD$PE1E1H$HDŽ$H$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(HD$D$ |%D$8h HD$PE1E1H$HD$0E1E1H$HDŽ$HD$`HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ $"D$8\HD$PE1E1H$HDŽ$E1H$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$D$ $D$8%HD$PE1E1H$HDŽ$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ %D$8HD$PE1E1H$HDŽ$E1H$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ $D$8HD$PE1E1H$HDŽ$H$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(HD$D$ %D$8eHD$PE1E1H$HDŽ$E1H$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$@HD$(D$ %D$8H=LL$@LL$@HD$H=HLL$@H5LL$@HD$cPH\$L$Lt$PH\$Lt$`HHHH!H U HEHz)E1E1H5 H81+Hl$HE1E1H$D$ K#D$8hH$HD$H$HDŽ$HD$0HD$`HD$@HD$(H;)|H$H H$H/[H$HDŽ$HGLAIHH$AH$HH$A׾H'x3H$H/tHDŽ$OL̃NƒH\$MH\$E1H$Lt$PE1E1Hl$HLt$`L$HD$D$ h#H$D$8hH$HDŽ$HD$0HD$`HD$@HD$(IH\$L$MALt$PH\$Lt$`H$H/LL$HDŽ$}LL$HIHkLL$H H5HEH'E1E1H81|H$E1Hl$HD$ p#H$HD$H$D$8hL$HDŽ$HD$0HD$`HD$@HD$(=H\$IH\$E1Lt$PL$Lt$`LL$ Hl$HE1E1E1H$D$ p#D$8hH$HD$H$HDŽ$HD$0HD$`HD$@HD$(LL$hLL$dHD$(E1E1E1H$H\$E1Lt$PH\$Hl$HLt$`L$HD$HDŽ$H$D$ `#H$HD$0HD$`HD$@D$8hHWHgHGL H@H$KHl$HE1E1E1H$D$ K#E1D$8hH$HD$HDŽ$HD$0HD$`HD$@HD$(ZH$E1E1H5 H81OzHl$HE1E1H$D$ K#D$8hH$HD$H$HDŽ$HD$0HD$`HD$@HD$(hJ@JHD$(ME1E1H$H\$Lt$PH\$Hl$HLt$`L$HD$HDŽ$H$HD$0HD$`HD$@D$ @#D$8hUH\$MH\$E1H$Lt$PE1E1Hl$HLt$`L$HD$D$ ?#H$D$8hH$HDŽ$HD$0HD$`HD$@HD$(IH\$E1H\$H$Lt$PE1Hl$HLt$`L$HD$HDŽ$H$HD$0H$HD$`HD$@HD$(D$ =#D$8hHD$(E1E1E1H$H\$E1Lt$PH\$Hl$HLt$`L$HD$HDŽ$H$D$ 8#H$HD$0HD$`HD$@D$8hs}pGHD$(E1E1E1H$H\$E1Lt$PH\$Hl$HLt$`L$HD$HDŽ$H$D$ 5#H$HD$0HD$`HD$@D$8hH\$E1H\$E1H$Lt$PE1E1Hl$HLt$`L$LD$(HDŽ$H$HD$H$HD$0HD$`HD$@D$ 3#D$8hpH=,IFH=HnH5o IEH|qGD$ k'H$E1D$8D$ i'H$E1D$8HD$0HD$0H$E1D$ b'H$D$8HD$0E1E1H$D$ ]'H$D$8HD$0E1E1H$D$ X'H$D$8KH=L\$ L\$ IH=~HߗL\$ H5ۗ L\$ IφHD$0E1E1H$D$ V'H$E1D$8H\$E1H\$E1H$L|$HE1Lt$PLt$`Hl$xL$HD$0H$HDŽ$HD$`HD$@HD$(HD$D$ "D$8b`$zAHDŽ$E1H$HD$PH$HD$0HD$pHD$hHD$HHD$xHDŽ$HD$XHD$(HD$D$ n%D$8HBH$HȚHRHHH$H$H/LL$DyLL$鉚D$ f'H$D$8DD$ d'H$D$8H$HD$0H=XL\$ L\$ IuH=:HL\$ H5R L\$ IIIH\$E1H\$H$L|$HE1Lt$PLt$`L$HD$HDŽ$H$HD$0H$HD$`HD$@HD$(D$ "D$8c1D$ &'E1E1H$D$8H$E1w8HRH5H8xܚI|$:HL$HD$ D$ 6'E1E1H$D$8H$E1D$ 4'E1E1H$D$8H$E1_H\$E1H\$E1H$Hl$@E1E1L|$HH$Lt$PLt$`L$HD$HDŽ$HD$0HD$`HD$(D$ "D$8eHD$(E1E1E1H$H\$L|$HH\$Lt$PLt$`L$HD$HDŽ$H$HD$0HD$`HD$@D$ "D$8e{HGH$H=HWHHH$H$H/t;H$H$H]=H$HX=Hu=uHD$(E1E1E1H$H\$L|$HH\$Lt$PLt$`Hl$xL$HD$H$HDŽ$HD$0HD$`HD$@D$ "D$8b}HD$(E1E1E1H$H\$E1L|$HH\$Lt$PLt$`Hl$xL$HD$H$HDŽ$H$HD$0HD$`HD$@D$ "D$8bHD$(E1E1E1H$H\$E1L|$HH\$Lt$PLt$`Hl$xL$HD$H$HDŽ$H$HD$0HD$`HD$@D$ "D$8b>HD$XH\$L|$HH\$HL$HD$@H$Lt$PLt$`Hl$xHD$HDŽ$HD$`HD$(s=LssHD$xHGHHAHHl$xHZAH$H/z,IGH5rLHDŽ$HH@HH$H0@HELhpM:I}:H|$(IHHjDHHH`FH+I<MDHLAUI.Hu8H$HZH$H/.Hl$xHHDŽ$H}HD$HH9i;HEH$HT;HUHHH|$xHT$xH/5H$L$Hl$xHIBLH8HD$(H$Ht H/8H$HDŽ$H/!.H|$(HDŽ$BH|$xH/p2HD$(HD$xH8f2HD$xH$H;g;H:~H5gH9pBHgHEHH-gHl$xHCHEH5-vHHH;DIMDH|$xH/9L\$HD$xUFL\$HHD$xHCH$HHEHL\$HH$H;FHf}H5gH9pEHfHEHH-fH$HgGHEL\$HH5tHH2GL\$HH$HyEH$H/P?H$H5"uL\$H$HDŽ$GL\$EH$H/@ICL$HDŽ$Hl$xHHCH=1L\$>L\$GL\$HLLHAHL\$KH$I+I@H|$xH/0@H$HD$xH/ @HT$(Ht$HDŽ$H$L{HL$HD$01HDŽ$LAHHYJH;H$ JH$H$HDŽ$H$CH<{H5dH9pIHdHIHH=dH$HsIHGH5rHHNIHD$xHyGH$H/@H|$xHD$HHDŽ$H9GRH4$aH$H$HtH/ BH$HDŽ$HRH|$xH/@HD$xBHD$xHHQH$H4$HDŽ$HEHHD$HHi@H$HD$xHt H/XCH$HDŽ$Ht H/BH$HDŽ$Ht H/BHDŽ$H,$HCH5kHHH"IHH$HHH4$HV>H$HHIH$H/@H$H;=HDŽ$H;=[M:H;=@:9ŅLH$H/B@HDŽ$IHCH5jHHH EHH$HDLB@HD$xHHD@H$HHpGHD$xH$HHD$xHE=HD$xHHGH$H/?H$HDŽ$H/j?HD$xH5TaHDŽ$HD$xHD$HwH9pMHaHMHH-aHl$xHMHEH5gHHHcMHH$HLH|$xH/C@HD$x?HD$xHHLHL$HHD$xHH2BH$HHLHvH P`H9H:LH7`HLHL#`MKICL\$LH5mHHKL\$HH$H"GI+DH$H5nH$>AFH$H/tDH$L$HDŽ$Ht$xHEHHLH=ȤHL$ Ht$)8Ht$HL$ ~LHLH;HOH$H$H/CH|$xHDŽ$H/CH$HD$xH/CH$HDŽ$HH$HD$ L-*mHDŽ$HELHD$XHCHD$PHD$8LIPLD$hHHT$`>HD$H7LH@HT$`LD$hHHLH|$LHD$H$HPHD$8H5lLHt$`IUHHT$z>Ht$`HHOH@HT$HHLLH$HHzOHD$xHD$HH9GKHGHD$xHKHWHHH$H$H/KHt$xH$HnK蜹H|$xH$Ht H/CH$HD$xNH$H/2GH$HDŽ$H/ GHDŽ$7H|$PHD$HZHD$8L\$XE1L|$8J4Hl$XLMHt$Lh@HLt$`MIMH8MILHt$@LH0HH H0H0H0;KHC 12H(H0H0H@(;s{HcH H0H@H0Pt8H(HR8HcR H0@Hx:HD$xHD$fHH9dHuH;RmfHoHHoHD$@ :fDH$H;wH$H$H$":HqH5ZH9p/%HZH'HH=ZH$H#HGH5[hHH'HD$xH'H$H/Hl$xHDŽ$H}H;='H5H9*6H4$H趵fDH$H$HtH/6H$HDŽ$H(H|$xH/HD$xLD8HD$xHy*8HD$H$H*~$H$HDŽ$HDŽ$D$xHD$x@Ht H/ H$HDŽ$Ht H/H$HDŽ$Ht H/HDŽ$HoH5XH9pHXHHH-XH$HHEH5_HHHHHl$xHH$H/HDŽ$7H$HH$Ht$HH$Hp:H$HH%HnH5WH9p=(HWH)HLWM'ICL\$ LH5leHH(L\$ IM(I+H5fH$LLL$ #9LL$ &I)Ll$xL$H$IEHHFH='0,HLLH3HF0H|$xH/H$HD$xH/H$HDŽ$H/HEuHDŽ$H} HEHD$0H[mH|$HD$ HH,fH=fbH*l;,HD$8H5dLHt$MhLD$(L6Ht$HIe-H@LD$(HHLLLH$IHhFHD$8L-dLLMpLD$Ld6HH-H@LD$HHwLLH$HHFH@H;HDŽ$HGH$HHWHHH$H$H/L$L$IxMtH5?H9[LD$0LD$DLLlIH$Ht H/A(HDŽ$MH$H/HDŽ$Im_/HD$(HD$ HIHD$H~iHD$8Ll$0Hl$8E1J4L|$0Ht$ LH@HLIM͐HL$@HMMHLI3Hl$ L9t$uL|$0Hl$8H|$(C.L$MIEL%YHHs0H=@,(.1LLH/H@4H$H$H/K$L$HDŽ$M/I.8$HDŽ$HEIE11Hl$ E1HD$0HD$(HD$fDHI MxISEHFHH$-IH5\HHV 1H$H'IM H$L$HD$H$H$2IB HF(HH$HF H$HFH$V-IM~H$LHL_H5b譊sI HD$ E111HD$E1E1E1HD$0AQJAHD$(HD$H|$xHt H/TMt I)eH$Ht H/nH$Ht H/oH$Ht H/pDDE1H H=dMt I/UHt HmUHL$HtHHD$8HHFMt I.GHt H+HHL$HtHHD$HH9Mt I,$9HT$(HtHHD$HH*H\$0HtHHD$HHtHL$HtHHD$HHttHT$ HtHHD$HHt9H$H\HHD$HHGH.:f.H.fDH.tH.fDL.H.H.Lx.Hh.HX.LH.H8.DD$@LL$8!.DD$@LL$8fLDD$8.DD$8fDD$8-DD$8~@DD$8-DD$8}@DD$8-DD$8|@HD$ E111HD$E1E1A`JHD$0AHD$(HD$DH-cL%SHEHHtH=ϓ:' 1HLH0*H!H诉Hms HD$ E111HD$E1E1AJHD$0AHD$(HD$IFH5\LHH"IM9#H5~LߺL\$D)L\$HI#I+M9I9lL; _LLL$$LL$b'I).IFH5ULHH+HHF+HDŽ$HD$HH9E"HEH$H!L]HIHm$L$M!I{H5H92L\$h(L\$LLL\$L\$IH$Ht H/&HDŽ$MnAI+#H5R1LLL$'LL$HI*I)#M9I9XL;KLL\$>#L\$0I+!&*IHHSHHuSICHD$H;-HDm]X HHP@H [A IC HHH[L\$IC(*L\$HI< AD$ ID$HHD$1L|$ Lc1IL'@LRH9tc1L LIIJTz yLBMtMIJ  tHz0LRH@LE9uILHD$IH<0Lq+LLL\$!L\$A6KAHD$ E111HD$E1E1HD$0HD$(MI+LDD$@LL$8(DD$@LL$8z($IA H]HzLL$HH]IA((LL$HI|&HUB HZ #HmH="H4$HH %HH$H$HH1L%'HHHD$ E1E11HD$E1AJAHD$0HD$(HD$H=SHHH5HIMfDHD$ E111HD$E1E1AJHD$0AHD$(HD$UHHt$0HT$((HT$(Ht$0cL|$ II,$AKALL\$8AK&AHD$ E111HD$L\$8E1E1HD$0HD$(HHt$0HT$((HT$(Ht$0|L|$ II,$HD$ E111AKAE1HD$HD$0HD$(HLL$%LL$\HL|$ H\$H5H8&L\$HL|$ H\$H5ʳH8&LL$NL%H$HH%HD$HH$H H$HDŽ$HDŽ$HA6H ALL\$$L\$L\$ LL$$L\$ LL$H$HP0H;0HHP0H0H0H0Lx$n$H5RNHHV#H/H$IIC HUHL\$HHUIC($L\$HIm'HF HH$HFH$ I>#IL$0IT$H@HDHL$IL$0IT$H@HDHL$IPBLr M@H=LD$c[ LD$LLAIU M. H$HH/HDŽ$s1LLLL$^"LL$HIHD$ E111E1A1KAHD$HD$0HD$(fDLLL$ "LL$ HAJE11n"E1A1HD$ E1HD$HD$0HD$(HD$H+L|$ uH"L-WH5eI}H9ttukLL蠞HH05H~HmHD$ E111AKAE1HD$HD$0HD$(fIUBtHZ MmH=yLLHqHdIH#HD$ E11E1HD$AKAHD$0HD$(bHAK1E1 1AE1HD$ HD$HD$0HD$(E16 H+L|$ wH jL} Lp H=LHBH5BHHD$ E111E1AKAHD$HD$0HD$(r HD$ E111E1AKAHD$HD$0HD$()<I,HD$ E1E11E1AKAHD$HD$0HD$(H=-WL-KHGLHH!HH!Hl$xLLL$8AK1"E1LL$8E1HD$ A1HD$HD$0HD$(N1 IC HHH]PL\$IC(OL\$HIHD$ E111E1AKAHD$HD$0HD$(ILl$L9d$PL|$8Hl$XLt$`H|$HH$HtiH5EzH$H$H/e)H$HDŽ$Ht$H.HHD$8HH.HDŽ$HD$ E1HD$HIHD$ E111HD$E1E1AKHD$0AHD$(HD$?5`+8LL$HHD$ E11E1HD$AKAHD$0HD$(?HD$ 1E11HD$AKAHD$0HD$(y5fHG(H0J(H)0H0LcJZTP@F<2H%HD$xHD$(LL$LL$HHHD$ E111E1A1KAHD$HD$0HD$($H@0H0H@(H0H(H+0H0IPB)Lj pMpH=zl d1LAIdM8fDISBHj MsH=yL\$ L\$zL\$ LLHD$LL$L\$ M!H$HH/^HDŽ$HD$ E11E1HD$ALAHD$0HD$(HD$HD$ E1E11E1AwOAHD$0HD$(HD$H=>uHdHLLeH$HHHD$ E1E11HD$E1AELAHD$0HD$(HD$N  HD$ E1E11E1A|OAHD$0HD$(HD$7HEH$HHUHHH|$xHT$xH/ H$Hl$xH#H$H IA HzHH&FLL$IA(`LL$HIHD$ 1E11HD$AKAHD$0HD$( HuHH5wH8hH$HDŽ$H0HDŽ$OHD$ E11E1HD$A!LAHD$0HD$(HD$'HD$ E111HD$E1E1AKHD$0AHD$(HD$ E111AOAE1HD$0HD$(HD$L6~HD$ E1E11HD$E1A4LAHD$0HD$(HD$PHD$ E111HD$0E1E1A~OHD$(AHD$H=;H/H5/,IL|grLL$ BHD$ E111HD$E1E1A;LHD$0AHD$(HD$ OL OmcL\$ IDHD$ E111E1AOAHD$0HD$(HD$HD$ E111HD$E1A6LAHD$0HD$(HD$H=9#qIsHPHE11H5AWLE11H81?AE1HDŽ$HD$ HD$HD$0HD$(HD$0H=19pIHD$ E11E1HD$A8LAHD$0HD$(HD$LL$HHD$ E111HD$E1E1AJHD$0AHD$(HD$yL\$ L\$L$H5FH9tuLH腈HD$(HUBtHZ  HmH=Iru1LHHHD$(HHD$(HHHD$(^\ IHHD$ E1E11HD$E1AJAHD$0HD$(HD$eH H BHT$(1Ht$HHHD$xH;$HD$xE1HD$0A3OAE1E1DD$HE11E1H$H$L\$@1H$LL$8uLL$8L\$@HD$ HD$DD$HHD$0HD$(HD$a  ' =qIcHHAH5qzjL hH H8H 1_IAXؽILL\$賘L\$ISHD$ E111HD$0AOE1E1HD$(AHD$HD$ E111HD$E1E1AEKHD$0AHD$(jHl$ AOE11HD$0AE1E1HD$(HD$.aHWHl$ AOE11HD$0AE1E1HD$(HD$HD$ E111E1AGKAHD$HD$0HD$(HD$ E1E11HD$E1ANAHD$0HD$(HD$\HD$ E1E11HD$E1AULAHD$0HD$(HD$&HiHE11AOH8Hl$ E1AHDŽ$HD$0HD$(HD$LLL$=LL$6LHD$&L\$PHD$ E1E11HD$E1ARLAHD$0HD$(HD$;FH:HL\$L\$ HLAOH8HDŽ$HHD$ E1E11HDŽ$E1AELAHD$HD$0HD$(HD$HD$ E111HD$E1E1AELHD$0AHDŽ$HD$(HD$)L\$L\$HIHj HD$ E1E11E1AOAHD$0HD$(HD$HH$IHE1A?OAHD$ E111HD$0E1E1ANHD$(AHD$RLAIٿ͵H}L\$E1FHD$ E111AIKAE1HD$HD$0HD$(1L\1BL\$ LL$AL\$ LL$ACOAE1AAOAƿL骿HD$ E111HD$E1E1AgLHD$0AHD$H=0H%H5%0HBHD$ E1E11HDŽ$E1AWLAHD$HD$0HD$(HD$.,$oHD$ E1E11E1ALAHD$HD$0HD$GE1AHOA@HD$ E111HDŽ$E1AWLAHD$HD$0HD$(HD$rsHl$ E1E11HD$0A)PAHD$(HD$1LLHHD$ E1E11E1ALAHD$HD$0HD$,ZI齻BH銿HD$ 1E11HD$AKAHD$0HD$(HLLL\$L\$HH$HHD$ E1E11E1ALAHD$HD$0HD$`HD$ E111HD$E1E1ALHD$0AHD$6H=7-dHt`鴿dֽHD$ E1E11E1AXKAHD$HD$0HD$(HdHD$ E111E1AiKAHD$HD$0HD$(dE1H=],L\$cL\$HdH=?,H0!L\$H5,!WL\$H8HD$ E1E11E1ALAHD$HD$0HD$HD$ E1E11E1ALAHD$HD$0HD$w%鳿(AALHD$ E111HD$AE1E1HD$0HD$HDŽ$鞼1L\$>L\$HuHH5FeH8L\$H$HHmHDŽ$AfKA\E1'HHHH5dH8AL\$HƸHD$ E1E11E1ALAHD$HD$0HD$HLE11H5ȗE1AKH81E1AHD$xHD$ HD$HD$0HD$(HHH5c1AKH8[E1AHD$ HD$HD$0HD$(aH"LE11H5E1ArOH81E1AHDŽ$HD$ HD$0HD$(HD$ HHDŽ$ALhHߠE11E1H5cLL$8A1KH8uLL$8AHD$ HD$HD$0HD$(yHaHD$ E1E1AMHD$AHD$:HD$ E1E1AMHD$AHD$HغLH$Ht H/H$HDŽ$Ht H/H|$xHDŽ$Ht H/H$HD$xHt H/H=ދHDŽ$H >H$H|$xH$dN6H,$H!H9EHEHHHH|$xHt H/UH$HD$xHt H/f H$HDŽ$Ht H/ H$H$HDŽ$H$DH,$`Hj fA邻L?AkKI骶L,H=%]H^H=%HH5,HL$HcT$\$L$% D$Yf(YT$L$f($YD$Xf/wAI>AVfII LH!H*AYLtfW  I94?H(f([]A\A]A^A_@IFI>fW : I>Y $AVfW  $fW f(XYf/vX AzfW y m@H~CAUIATIUHS1HfDLADHH9uH[]A\A]DAWAVIAUATL%UH-SHHDIFI> HcL$ \D$% fAnfZAYAf(YL$ f(fA*YG YD$XZf/wDI>AVfAA A*AYfA~t W? fA~D9l/HfAn[]A\A]A^A_IFI>f*YW I>YL$AVf*YWL$W(XY/vX _AfA~RW zfA~AH~CAUIATIUHS1HfDLADHH9uH[]A\A]DUHH0f.hD$d|$ff.8=@f/|$@H}UHD$ t$T$\f/r5 D$f(^\$f/rH0]D$L$ \^D$=|$L$ D$f(Y\f( {^T$\$\f/(H0]f.|$\=Y|$(ff.2Q5^t$@Hff(D$YX޽f/sf(L$H}YYD$UL$f(YYY\f/wbL$ D$D$%e\d$f(L$ f(X=YD$(YYXf/D$'D$(YD$H0]DH0f]H0]fDUHH .AD$ud$f.R=/|$%d$H}UfH*YT$T$ z t$T$ \/r- D$ (^\$ /rH ]fD$L$\^D$|$L$D$ (Y\( E^|T$ \$\/#H ]Dt$\5fYt$.;Q=d$^|$Hf(D$YX/s(L$H}YYD$ UL$f(*YYD$YYN\/w_L$zD$D$ i=!\|$ (L$(XYD$YYX/D$D$YD$ H ]@H f]H ]P+%ff.HHH?PHHff.HHH?PHff.HHH?PHHff.HGH?f.E„f.f(D„USH(-mf/Kf1XI Q\$^T$YYX 9Y\ 5YX 1Y\ -YX )Y\ %YX !Y\ Yf(L$RL$X T$f(5\$^f(\|f/YX X\vHH~C\PL$Hf(T$L$H9T$\}H(f([]f(f\H,H*Dff(ff.@H$L$YD$X$Hff.HD$YD$HfDHHH?$L$PYD$X$HHL$YD$HfDHL$ YD$ HfDUHH -D$f/L$rf/sBD$H:H$D$' $H ]X^f(ff/wvH}UH}$U$ ^L$D$f(T$ k^L$$f(X$=Jf/rf. $H ]^f(ff.fHY_HXfDUHH $D$ $Hf(Yf($\$$H]Y^f(ff.fUHHHD$L$H]^f(ÐHD$Q^D$Hff(ff.z uHT$ T$H^>ff.HD$~ yfW~ hfW Ĵ^L$Hff.fSHH$L$ ff/wFH;Sf/pr n\\f(L$Y$H[\@XYD$X$H[ff.AVfI~SHHL$H;Sf(\f/vofWgbL$H[YfInA^\SHH$L$DH;Sff/v x\^YD$X$H[fHHff.HD$!fXf.wQYD$Hff.fUHHD$L$HY $f(L$L$ff(f.w!QY $f.w1Q^H]f(D$f(tT$ff(f( $V $f(ff.AWf(AVATUSHH@f/MD$f.zuE1H@L[]A\A^A_f.D$fWE1 ڱD$f.IL$H;SL$Yf/L$wH@L[]A\A^A_fDff.-Qf(D$L$L$Y X D$0Yf(L$ \ \-'f(\%^ f(d$8XfI~XfI~^\fH~f.H;SH;f(\T$ST$ D$f(fTҰ\fIn^L$XD$ YXD$XL$f/ L,\$rfHnf/M_5f/v f/Gf(L$(D$fInL$(t$8D$D$ Y^X_|$ID$X|$f(f(\fI*YL$0\L$D$fH*L$L$\f/L$H@L[]A\A^A_D$Bf(f0UH\^f(H]f.AWfAVH*AUIATIUSHH$t H9rm ĮMe$AEf(\A}|$Pf/t$H L$PT$Yf(fD$HAEX\$AM(f(L$\$Y\$HH,fL$T$f.Im0f(\$hz Qf(Y\$HY%6-\f(fTf.(5d$PXf(t$(fD(D$AE8ffA(H*XXiXf(Am@$A\f(\$xA]P=Y|$8^f(A}H\X!fD(\$@A]Xf(\^f(YXYf(Yl$H\\$`^A]`Yf(XYfA(AXXL$pAMhAYf(D$AEpfA(^D^Xf(D$XAExfA(XD$ AMI)IEH$H;Sd$ H;Yd$Sd$f/d$f(Nf/d$"t$l$@fH*\YT$0f(^XXD$8\X\$(fT^\f/L$[6L$T$0L,MI)LH?HL1H)H~#D$hYD$(fH*\f/ID$fd$P^d$HH*YI9/f(ef/$M)f/L$(MGH[]LA\A]A^A_f.ADEf/d$Xwcd$0D$b^D$`XD$8AL,MSEJd$0\d$L$YYL$`d$0D$\$x^D$p\f(L,M9EL$d$0\d$XYYL$pqfDHEf(I9ff(H*H^\YI9}IFH9ff(H*H^\^H9~dff(^tt$hLIXgf(XYHXX^^XT$(YfH*^f(T$0\$\$T$0f(f(\f/Xd$0f/IFfEfEL*HEfEL*ID$fL*$L)H*D$fE(EYfA(fA(D$A^fE(D$AYfD(l$EYDYD$$D$D$D$$D$fA(^D$T$HD$$t$Yt$PAYf(^\=$5d$0f(-D$^f(D$D$DY$D$D$D$D$\f(^\QfD(^D\D^ >f(A\fEM*DX\$(DY$A^DEXfEM*AYDXf(A^A^AXfD(D\f(E^A\fD(A^D\f(E^A\fD(A^A^Xf(A^A^D\f(E^\A^A\fD(A^\A^D\f(E^\A^A\A^\^L$A^A^XXf/f($YT$\X@L,fDH,ffUH*f(fT\fVf(f(t$P\l$Hf.Bf/B}J8rz Hj0L$J@Yt$P5$JH|$HL$8JPYt$(L$xJXL$@J`L$`Jh\$hL$pJpL$JxL$XL$ -D$hT$L${T$L$ff.AUIATIUSHH8D$t H9r_d$-1fMeI*AE\AeAm f($l$$Y»d$$L$f(AEfYYAeXX f.Q-f(YXf/aH,Im0$H;S$1f/f(vt@HBH9}%$H;S$f/vQ1f(HBH9|Lf\H)H*YT$YfH*YT$^f/vH1H8[]A\A]f.Bf/Bz ZHj0|$1f(d$(\$ T$ $d$(T$- $\$ YXf/f(l$ d$$>$d$l$ f(fYXH,ff.Hf.EurfUHH*f/rYf/rM]/\Yf/f(r&IH]L)fD1D]¿f軿IH]L)UHH$f(L$贽L$ff.$f/v]f(HL$\f(軿H$L$ff(f.~QX$H]YXY Hf(dfHHH*X$H]FfDH]fB$HH]D$f(9T$f(hf.UHH $f(D$$$Hf(Yf($趾\$$H]Y^f(ff(f(SHXf(H ^L$\$l$譸\$L$Y f(YYYf(YXff.w\Q\YT$\$H;XT$S\$T$f(f(X^f/s Y^f(H f([f(\$T$\$T$f(UHH@D$8f(L$3f/D$f/D$s|$f/ -[ft$Yl$YXf.Qf(XL$f(Xf.JQ\T$f(f(X^f(YXXL$^L$0&f(^cXD$L$ \f/D$sH}UY׷\$0H}f(YXXL$f(L$^\d$(YL$ UL$ f(L\Y\f/D$\H}UD$D$(4f(f/D$vfWXT$8 jf(fT.T$X0 t$T$\f/vfWIH@]H}UX\YH@]ft^D$f.QD$HjYD$ XD$8f/vXf/q\dD=f(|$|$^Xf|$D$0(ξD$qf(L$ 贾L$ f(f(蜾l$f(hff.fSHH0D$ fW eD$(H;Sf/D$ D$H;SYD$(T$f(fWYf/~f(T$\$衾\$D$f(茾L$^XaL,MaT$ff.E„EH0L[f/ArA@H|HH?D$\$PL$$f(f/vf(fDYHXf/wHÐHD$~T$$fWf(~ $f(fWf(^f(fTf.v3H,ff(%fUH*fTXfVf(f/HsH,HDf/@r遲+ff.AVSHH(\6f(D$$WD$H;SH;D$S%\d$fI~ ^L$f(=f(HfTf.v;H,f=H*f(fT\ fUf(fVf/]5mf/Kf(L$T$^X~T$l$f(fInYf(\!^Yf(\ ^f/H(H,[A^f.f(f(H8H\\T$H?L$D$(f(d$^l$ 4$P4$d$L$T$f/r;l$ \$(Yf(Yff.wPQXH8f(f(\ 8\fYYf.w*Q\H8f(f($$f(f($$f(1HATIIUHI SHLHI LHL IIL III LH I ĸH9wfDH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.ff.@AWAVAUATIUSHHttHHH?IIH9wqHEAEDjAME9v,D1AAA9sH}UAME9wI IHL[]A\A]A^A_@HEHEuQLbIHHI9v+L1HIIH9sfDH}UIHI9wHL$DHEH}L!I9rL$oDHEH}D!D9wL$ODЉI>@I0fDAWAVAUATAUSHteHGIH?AEu`JL$ Dl$ AME9v%1AAA9sI>AVAME9wI AHD[]A\A]A^A_@IFI>D!9rD$f.AfAWAVAUATUSHt$H\$PfA։IAMfAAEEF-DD$ H?AUDD$ A$3EAfA9v^AAƙAAf9r&ID3A$xA<$3AfA9v%uI}AUA$3AfA9wD$H[]A\A]A^A_+A$PA$D!f9s!uI}AUA$D!f9rfD$H[]A\A]A^A_fuDH?AUA$D$fH[]A\A]A^A_@+AxA9+A)ff.@AWAVAUATUSHt$ H\$PA։IAMAAEE~H?AUA$3D@A8v^AEAƙAA8r#Ff3A$xDA<$3@A8v%uI}AUDA$3@A8wD$ fH[]A\A]A^A_f+A$PA$D!@8s!uI}AUA$D!@8rD$ H[]A\A]A^A_uDH?AUA$D$ H[]A\A]A^A_D+AxA9+A)ff.@USHHl$ tAHL˅tmA)EH[]fDH?QEAWAVAUATIULSH(HL$HujH~OHHHfInLHHLHH9uHt$HHtLdH([]A\A]A^A_IHH9EH|$~DrE1Dt$D$fI}AUt$I9s$D$19s@I}AUI9wH LJLIL9|$uLf.HEE1HLrH|$H\$fI}AUIHHL9s-HD$1IHH9sI}AUIHH9wHLJDIL9|$ufH|$1fI}AULHDHH9\$ufDH|$n1f.I}AULHDHH9\$uBIII LHI LHI LHI LHI LH I H|$E1fDI}AUL!H9rLJDIL9|$uIII LHI LHI LHI LHI H|$E1I}AUD!9wLJDIL9|$u[1OfAWAVAUATMUHSHt$H~pHAHHfnLHfpHLHH9uHH@t,t$HHHA4H9~HAtH9~AtH[]A\A]A^A_@IӃEDrE1Dt$\$ H~f.I}AUt$I9v$D$ 19s@I}AUI9wH L$C IL9uH[]A\A]A^A_fIII LHI LHI LHI LHA HE1I}AUD!9rD$CIL9uH[]A\A]A^A_ÐH1DI}AUD$AHH9uH[]A\A]A^A_1zAWAVAUATUSLHfHHAHCHfnLHfaHfpLʐHH9uHHt\Hxf4CHH9~KHxftH9~=HxftH9~/HxftH9~!HxftH9~Hft H9~ft H[]A\A]A^A_DIAfHEH~DrII1H$A1D$ ufI?AWfD9s@D$ Af9s1t1fA9vI?AWȉfA9wۿHDfKH;$2t1뒐AHHH HHH HHH HH HM4I11t@1!fA9sI?AW!fA9rDHfSL9uH[]A\A]A^A_@HI,IHDfCH9mI?AWATfHSH9uP1DAWAVIAUATUSH@t$ uVH~>> from numpy.random import Generator, PCG64 >>> rng = Generator(PCG64()) >>> rng.standard_normal() -0.203 # random See Also -------- default_rng : Recommended constructor for `Generator`. Gets the bit generator instance used by the generator Returns ------- bit_generator : BitGenerator The bit generator instance used by the generator __pyx_capi__name__loader__loader__file__origin__package__parent__path__submodule_search_locationsco_argcountco_posonlyargcountco_kwonlyargcountco_nlocalsco_stacksizeco_flagsco_codeco_constsco_namesco_varnamesco_freevarsco_cellvarsco_linetablereplacename '%U' is not definedcannot import name %SMissing type objectendunparseable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'an integer is requirednumpy/random/_generator.c%s (%s:%d)stringsourceexactlyView.MemoryView.Enum.__init__View.MemoryView._errView.MemoryView._err_dimDimension %d is not directView.MemoryView._err_extents'NoneType' is not iterableExpected %.16s, got %.200stupleBitGenerator_generator.pyxat leastat mostlogserieszipfpoissonwaldrayleighlognormallogisticgumbellaplacepowerweibullparetovonmisesstandard_tstandard_cauchynoncentral_chisquarenoncentral_fbeta%d.%dbuiltinscython_runtime__builtins__4294967296complexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillvalidate_output_shapecontdisccont_fcont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointer__init__.pxdnumpy.import_arraygetbuffer(obj, view, flags)init numpy.random._generator__pyx_unpickle_Enumdefault_rngstandard_normalrandomstandard_gammaView.MemoryView._unellipsifystandard_exponential__cinit__uniformformatView.MemoryView.memview_sliceIndex out of bounds (axis %d)memviewsliceobjnegative_binomialdirichletintegersnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3permutationmultivariate_hypergeometricshuffletriangularoutpermutedmultivariate_normalvhuassignmentdeletionbuffer dtypeBuffer not C contiguous.choicemultinomialbase__reduce_cython____setstate_cython__Tstridessuboffsetsndimitemsizenbytesis_c_contigis_f_contigcopycopy_fortrannumpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generator__getstate____setstate____reduce__spawn00P00@P00lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllltlllllDPll\llhllllllllllllllll*llllllrvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv~vvvvvvvvv6BNvvZvvvvvvvvvvvvvfv*vvvvvvccccc}}cYmmmYYYYYYD44D4444444444444444444444444DD 444444D4D!-pppppppppppppppppzRxX`ht@ 0\^UL0hD%tTvU_|\dlH(06WH440H4p4 <;;;$<{=]=g===dII\FH,I\OUO8OOOQQQ RQ8pXr oon\t̋“$hHPG-% 2W|Tt$@p|$@4 WN*bb,\b\bHch\8cP\cTc\Dc\Uxd^^^wwrwCwwxxxxyzzyy0zv}A}K}}}~r~|~~~blXĄ4Ԅ Ԑ' А%Kqܽ=*$"! ! #"ri`CCCyCC&SSSQS=Sr r)rsssy6syyfK%r\=!T3@k·޿տ̿0xhdG}` &T $ 2 m 7h>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use ``default_rng`` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) Cannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose strides zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(k) = \frac{k^{-a}}{\zeta(a)}, for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 4.0 >>> n = 20000 >>> s = np.random.default_rng().zipf(a, size=n) Display the histogram of the samples, along with the expected histogram based on the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import zeta # doctest: +SKIP `bincount` provides a fast histogram for small integers. >>> count = np.bincount(s) >>> k = np.arange(1, s.max() + 1) >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, ... label='expected count') # doctest: +SKIP >>> plt.semilogy() >>> plt.grid(alpha=0.4) >>> plt.legend() >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The high limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. high - low must be non-negative. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either positive or negative, hence making our test 2-tailed. Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom. We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square root). >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> t -2.8207540608310198 We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom. >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_t(10, size=1000000) >>> h = plt.hist(s, bins=100, density=True) Does our t statistic land in one of the two critical regions found at both tails of the distribution? >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s)) 0.018318 #random < 0.05, statistic is in critical region The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance threshold. Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being true is too low, and we reject the null hypothesis of no deviation. standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use one of:: mu + sigma * rng.standard_normal(size=...) rng.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 # random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random spawn(n_children) Create new independent child generators. See :ref:`seedsequence-spawn` for additional notes on spawning children. .. versionadded:: 1.25.0 Parameters ---------- n_children : int Returns ------- child_generators : list of Generators Raises ------ TypeError When the underlying SeedSequence does not implement spawning. See Also -------- random.BitGenerator.spawn, random.SeedSequence.spawn : Equivalent method on the bit generator and seed sequence. bit_generator : The bit generator instance used by the generator. Examples -------- Starting from a seeded default generator: >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}" >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501 >>> rng = np.random.default_rng(entropy) Create two new generators for example for parallel executation: >>> child_rng1, child_rng2 = rng.spawn(2) Drawn numbers from each are independent but derived from the initial seeding entropy: >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform() (0.19029263503854454, 0.9475673279178444, 0.4702687338396767) It is safe to spawn additional children from the original ``rng`` or the children: >>> more_child_rngs = rng.spawn(20) >>> nested_spawn = child_rng1.spawn(20) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None See Also -------- permuted permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> rng.shuffle(arr) >>> arr array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` use `uniform` or multiply the output of `random` by ``(b - a)`` and add ``a``:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). See Also -------- uniform : Draw samples from the parameterized uniform distribution. Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a <= 0. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destination of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() out must have the same shape as xnumpy.core.multiarray failed to import normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.0 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. Because this method internally calls ``Generator.poisson`` with an intermediate random value, a ValueError is raised when the choice of :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled intermediate distribution exceeding the max acceptable value of the ``Generator.poisson`` method. This happens when :math:`p` is too low (a lot of failures happen for every success) and :math:`n` is too big ( a lot of successes are allowed). Therefore, the :math:`n` and :math:`p` values must satisfy the constraint: .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1}, Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution internally used as the :math:`lam` parameter of a poisson sample, and the right side of the equation is the constraint for maximum value of :math:`lam` in ``Generator.poisson``. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. This function internally uses linear algebra routines, and thus results may not be identical (even up to precision) across architectures, OSes, or even builds. For example, this is likely if ``cov`` has multiple equal singular values and ``method`` is ``'svd'`` (default). In this case, ``method='cholesky'`` may be more robust. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively, and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465. >>> cov = np.array([[6, -3], [-3, 3.5]]) >>> pts = rng.multivariate_normal([0, 0], cov, size=800) Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values: >>> pts.mean(axis=0) array([ 0.0326911 , -0.01280782]) # may vary >>> np.cov(pts.T) array([[ 5.96202397, -2.85602287], [-2.85602287, 3.47613949]]) # may vary >>> np.corrcoef(pts.T)[0, 1] -0.6273591314603949 # may vary We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation of the components of this sample. >>> import matplotlib.pyplot as plt >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5) >>> plt.axis('equal') >>> plt.grid() >>> plt.show() multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : array-like of floats Probabilities of each of the ``p`` different outcomes with shape ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1 dimension where pvals.shape[-1] > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn each with ``p`` elements. Default is None where the output size is determined by the broadcast shape of ``n`` and all by the final dimension of ``pvals``, which is denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it must be compatible with the broadcast shape ``b``. Specifically, size must have ``q`` or more elements and size[-(q-j):] must equal ``bj``. Returns ------- out : ndarray The drawn samples, of shape size, if provided. When size is provided, the output shape is size + (p,) If not specified, the shape is determined by the broadcast shape of ``n`` and ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of the multinomial, ``p``, so that that output shape is ``(b0, b1, ..., bq, p)``. Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn from the distribution. .. versionchanged:: 1.22.0 Added support for broadcasting `pvals` against `n` Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6]) array([[2, 1, 4, 3, 0, 0], [3, 3, 3, 6, 1, 4]], dtype=int64) # random Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2. >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]]) array([[0, 0, 1], [0, 1, 0]], dtype=int64) # random ``argmax(axis=-1)`` is then used to return the categories. >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]] >>> rvs = rng.multinomial(1, pvals, size=(4,2)) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The same output dimension can be produced using broadcasting. >>> rvs = rng.multinomial([[1]] * 4, pvals) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 <= ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range [0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.prod(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() is not compatible with broadcast dimensions of inputs integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 # random gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. Examples -------- A real world example: Assume a company has 10000 customer support agents and the average time between customer calls is 4 minutes. >>> n = 10000 >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n) What is the probability that a customer will call in the next 4 to 5 minutes? >>> x = ((time_between_calls < 5).sum())/n >>> y = ((time_between_calls < 4).sum())/n >>> x-y 0.08 # may vary References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement. Default is True, meaning that a value of ``a`` can be selected multiple times. p : 1-D array_like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in ``a``. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Notes ----- Setting user-specified probabilities through ``p`` uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of ``p`` is 1 / len(a). Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement: >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False) array([[3, 4, 5], # random [0, 1, 2]]) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype=' 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : bytes String of length `length`. Examples -------- >>> np.random.default_rng().bytes(10) b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in use) Parameters ---------- n : int or array_like of ints Parameter of the distribution, >= 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized binomial distribution, where each sample is equal to the number of successes over the n trials. See Also -------- scipy.stats.binom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the binomial distribution is .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N}, where :math:`n` is the number of trials, :math:`p` is the probability of success, and :math:`N` is the number of successes. When estimating the standard error of a proportion in a population by using a random sample, the normal distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002. .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BinomialDistribution.html .. [5] Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 39%. .astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4790)Generator.multinomial (line 3838)Axis argument is only supported on ndarray objects wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expected number of events occurring in a fixed-time interval, must be >= 0. A sequence must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) ' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling. laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------ ValueError If any value in ``alpha`` is less than zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") Unsupported dtype %r for randomGenerator.triangular (line 2794)Generator.standard_t (line 1774)Generator.exponential (line 405)unable to allocate array data.probabilities do not sum to 1Generator.logseries (line 3517)Generator.lognormal (line 2545)Generator.geometric (line 3323)Generator.dirichlet (line 4300)Generator.chisquare (line 1561)Generator.vonmises (line 1880)Generator.rayleigh (line 2657)Generator.permuted (line 4498)Generator.logistic (line 2465)Generator.binomial (line 2894)nsample must be nonnegative.itemsize <= 0 for cython.arraya and p must have same sizeGenerator.weibull (line 2061)Generator.shuffle (line 4658)Generator.poisson (line 3162)Generator.laplace (line 2261)Generator.integers (line 526)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsGenerator.uniform (line 945)Generator.pareto (line 1963)Generator.normal (line 1123)Generator.gumbel (line 2346)probabilities contain NaNout must be a numpy arraynsample must not exceed %dInvalid shape in axis %d: %d.Generator.random (line 299)Generator.power (line 2160)Generator.gamma (line 1317)Generator.choice (line 682)Generator.zipf (line 3235)Generator.wald (line 2726)Generator.spawn (line 241)Generator.bytes (line 653)Cannot index with type '%s'p must be 1-dimensionalnumpy.random._generatornumpy.core.multiarraydefault_rng (line 4863)Generator.f (line 1395)normalize_axis_indexyou are shuffling a 'NotImplementedErrornsample > sum(colors)ngood + nbad < nsamplecline_in_tracebackarray is read-only__pyx_unpickle_Enumascontiguousarraymay_share_memorystandard_normal__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectcollections.abcallocate_bufferView.MemoryView__generator_ctorRuntimeWarning__reduce_cython____pyx_getbuffer_generator.pyxcount_nonzerobit_generatorOverflowErrorstringsourcesearchsortedreturn_index__pyx_checksumnumpy.linalgdefault_rngcheck_validUserWarningPickleErrorOutput size MemoryErrorImportErrorstacklevel__pyx_vtable____pyx_resultmode > rightlogical_orleft == rightissubdtypeempty_likeValueErrorIndexErrorwriteablesum(pvals__reduce_ex____pyx_statemarginalsleft > modehasobjectenumerateTypeErrorGeneratorwarningsswapaxessubtract__setstate__reversedreduce__pyx_typepickleoperatoritemsizeisscalarisnativeisfiniteintegershigh - low__getstate__endpointcholeskyallcloseSequenceEllipsistobytesstridesshuffle__rmatmul__reshapereplacensamplememview__imatmul__greaterfortranfloat64float32castingcapsule at 0x{:X}asarrayalpha < 0updateunpackuniqueuint64uint32uint16struct__reduce__random_picklenamemethod__matmul____import__ignoreformatencodedoublecumsumcopytocolorsastypearangezerosuint8statestartspawnsigmashapescalerightravelrangeraisepvals_pcg64ordernumpyngoodkappaisnanint64int32int16indexflagsfinfoerrorequal__enter__emptydtypedfnumdfdencount__class__arrayalphaPCG64ASCIIwarn__test__takestopstepsqrtsortsizesideseedsafertolprodpacknoncndimnbad__name__modemean__main__locklessleftitemintpint8highfull__exit__eigh__dict__copybool_baseaxisatolNonezigtolsvdsum__str__outobj__new__maxlowloclamepsdotcovanyalladd.[...,:-1]) > 1.0qh?$@333333?C??/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+ ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: Aޓ=?~)@ lѿ3 ; @UUUUUU?"@m{??@@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg?= ףp=@n?[ m?h|?5?333333 @r?$~?B>٬ @r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT! @h㈵>.A-DT! -DT!@3?r?q?0@9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L`-A-PEp.I/K/PO0PPT0PQ0@U0p\1P]10^1_2_@2`p2a2m2 n03`|3@3L4 l4p5Й55046@H666,7|77$88@ 9l9` 9`: %:`%:?X;@[;k<(>>(??`@,`A`_A(BpB<CbC@DD@$E0{E F FPF`FF4G0GGHPHpHHITIII(J@tJ`JJJJKK4KLK dK@|K@K`KKLL`0LHL@tLLL L`LM MPM MP,N`N0NNNO8O0POhO|OpOO0PLPPPQ Q Q$R&R(S*S`+S,TP/T1T5 UzRx $` FJ w?;*3$"DX l4EBDD d GBI AAB  4$\AA ABDF @HDi C \PDp D x\BED D(D0| (D ABBH Q (D DBBC D (A ABBE `XlBBE D(D0h (J BBBG I (D BBBE V(D BBB4\[BBA A(H0F(A ABB A@ G h H ,4AG0 AF  AH qAw P h4eBGD m DBH L DBF 4@<QADD ^ CAE M CAG xdAT K H`GBBB B(D0D8G` 8C0A(B BBBC K 8F0A(B BBBF ;lN4wAAG O CAD I CAC $PWBDA LAB\x$BBE A(A0R (D BBBI I (D BBBE {(A EBB4AAG  CAH I CAK $ckBIC YABD8BEL E(A0A8E@8D0A(B BBBD[BEL E(A0A8E@8D0A(B BBB8~BEH A(A0b(D BBB8R`BBE A(A0J(D BBB4@LeBDD E GBH AABx2D^ F IMbjHOBBE B(A0A8DP8D0A(B BBBP BHE A(D0JHfA\0D(A BBBTDblpAGd$`BBB B(D0D8Hh 8A0A(B BBBF  8F0A(B BBBA @BDD { ABH Q AEI A CBE P4xBBA s EBI A BBC D BBH H IBM HmBBE E(D0A8G8D0A(B BBBDj A H F(F0A8A@I E F(F0A8A@IL 'BBB B(D0D8Dp^xM_xApK 8A0A(B BBBD | 8A0A(B BBBB N8K0A(B BBB ( L $LBEA A(D@( (A ABBE m (A ABBE ( $!BD V EG k EH 44 !eBGD m DBH L DBF ,l !AG0 DO O AH 0 @#tBEG e EBF lEB4 #uBDD ` ABC AAB( #xBED ^ EBH 4 ($DE G \ D LX $QBEE B(A0A8G 8A0A(B BBBE ( +AAG  CAC  H-d $0QBB B(A0D8DP`HPt 8D0A(B BBBG HP \5BBB B(H0D8GP6 8D0A(B BBBA D :BIA [ ABF L ABA \ AEF D :BKD R ABJ A GBF Q AEI L, ;BEB B(A0A8GU 8A0A(B BBBE (| `AFAG0 AE A\ B(BEI A(G0u (D ABBJ [ (D ABBD \ (D DBBH <TC/AD h AJ F AA J AM G AH HDDyD F AA <l@EAD A AI G AH V AI G AC `FBAA D0  DABK i  AABC f  AABF `  CABA @ J BIA Y BBG Q EBH qBB(TJkBD d EA I EB 8LBEA G(G0s (D ABBF dLBBE E(D0A8F 8A0A(B BBBH d 8A0A(B BBBJ $RLD R J kDRLD R J k(dSB] A J F I G 0XAJ0 AD R AE nAH[0D[AJ` AD R AE nA ]L ]WBBB A(D0G@x 0A(A BBBF tHWP_HF@p^DD O E kd _BBB B(A0A8D@ 8D0A(B BBBJ B 8C0A(B BBBB 8b>BBA A(D0 (A ABBK d4d8BBB B(A0A8DP 8F0A(B BBBA  8A0A(B BBBH HkBBB E(A0A8D@Y 8D0A(B BBBI PmJBBD D0k  DBBA L  DBBD |  DBBD L<nBBA A(G@ (A ABBK  (C ABBH 8o4BBA A(D@ (A ABBD 8qeBBA A(I@ (A ABBC HsBBB B(A0A8D` 8D0A(B BBBJ |Plz\D d(Q0F8F@FHFPFXF`FhFpCxCCCCCCCCCCCCCCBO I H cHL{BBB B(D0D8D@R 8F0A(B BBBK `}BBB B(A0A8D@ 8F0A(B BBBH G8C0A(B BBBTL~BAG DBJ O DBK S DBG  DBA `BBE A(C0 (D BBBD R (D BBBD a (D BBBE H<uBBB E(D0D8D@j 8F0A(B BBBH 7BBB E(D0A8Gy 8D0A(B BBBC  GZBDXB DvCD{ADwCP0BBA D0  ABBE v  ABBE e  CBBD lKBBB E(A0D@k 0A(B BBBD t 0C(B BBBI v 0A(B BBBA Hx7 BBE G(A0A8I`0 8D0A(B BBBH @lDj B C E 4dBDG x ABH q CBJ L@EBBB E(D0A8M 8A0A(B BBBE L@CBBA D(Gp (A ABBF  (A ABBD <@At K p H (`BEA T BBH DBBA b BBE L BBH q BBC @BDD0a ABB V ABG v CBE \TBBA A(L0 (D ABBK Q (D ABBF d (D ABBC dxBBB A(D0GP 0D(A BBBH T 0D(A BBBI XW`_XFP|BBB D(D0G@jHIPYHF@_ 0D(A BBBG SHbPAXA`BhApDxBFAT@g 0D(A BBBK hBBB D(D0G@jHIPYHF@_ 0D(A BBBG SHbPAXA`BhApDxBFAT@g 0D(A BBBK BBB D(D0G@jHIPYHF@_ 0D(A BBBG SHbPAXA`BhApDxBFAT@g 0D(A BBBK |xBEA A(G@dHMP`HF@_ (D ABBA SHcPBXA`BhBpGxEFAQ@_ (D ABBG BBB B(A0D8G`Uh[pBxFFBFABFQ`[ 8D0A(B BBBD ^hWpRhF`hWp_hA`BBB A(A0G@dHMP`HF@_ 0D(A BBBH NHhPBXA`AhBpAxDBFQ@c 0D(A BBBH ,BEA A(GPuXW`BhFpAxEFAEFQPW (D ABBC l (D ABBK AXW`RXFP_ (D ABBH XBEA A(GPuXW`BhFpAxEFAEFQPW (D ABBC l (D ABBK AXW`RXFP_ (D ABBH 8BEA A(GPuXW`BhFpAxEFAEFQPW (D ABBC l (D ABBK AXW`RXFP_ (D ABBH BEA A(GPuXW`BhFpAxEFAEFQPW (D ABBC l (D ABBK AXW`RXFP_ (D ABBH |` BBB B(A0D8GPHXi`BhApAxBADBFQP|XI`YXFP_ 8D0A(B BBBG | BBB B(A0D8GPHXi`BhApAxBADBFQP|XI`YXFP_ 8D0A(B BBBG |`!<BBB B(A0D8GPHXi`BhApAxBADBFQP|XI`YXFP_ 8D0A(B BBBG !lBBB B(A0D8G`Uh[pBxFFBFABFQ`[ 8D0A(B BBBD ^hWpRhF`hWp_hA`|p"lBBB B(A0D8GPHXi`BhApAxBADBFQP|XI`YXFP_ 8D0A(B BBBG "JBBB A(A0G@eHIPYHF@_ 0D(A BBBJ OHfPBXA`BhBpAxBBAQ@[ 0D(A BBBG x#dBBB B(A0D8G`Uh[pBxFFBFABFQ`[ 8D0A(B BBBD ^hWpRhF`hWp_hA`|$d BBB B(A0D8GPHXi`BhApAxBADBFQP|XI`YXFP_ 8D0A(B BBBG $ BFB B(D0A8G`NhapBxFAEFABFQ`hEpkhF`_ 8D0A(B BBBI hWp_hA`NhVp`hG`$%BBB B(A0D8G`Uh[pBxFFBFABFQ`[ 8D0A(B BBBD ^hWpRhF`hWp_hA`|%jBBB B(A0D8G`hPpRhF`_ 8D0A(B BBBE Rh[pBxFFBFABFQ`4&BEA A(GPuXX`BhBpAxEFAEBWPW (D ABBD l (D ABBK AXW`RXFP_ (D ABBH &BBB A(A0G@dHMP`HF@_ 0D(A BBBH NHhPBXA`AhBpAxDBFQ@c 0D(A BBBH P',BBB B(A0D8G`Uh[pBxFFBFABFQ`[ 8D0A(B BBBD ^hWpRhF`hWp_hA`4',BDD r ABA v CBE 4(AD c AG V AI f CG `P( BBB A(G0 (D BBBD l (D BBBB  (D BBBD H(H$%BBE B(A0A8D@' 8D0A(B BBBK @);--BBB B(A0J-0A(B BBB,D)*BHH h CBA ,t)+BHH h CBA ,)H,BHH h CBA ,),BHH h CBA ,*-BHH h CBA ,4*X.BHH h CBA Hd*/V BBB B(A0A8D` 8D0A(B BBBH @*:BDD0i ABJ V ABG v CBE *::BFB B(A0D8Dp 8A0A(B BBBA |xW_xFp^ 8A0A(B BBBH  8A0A(B BBBH xW_xApbxV`xGp +HyD  AD L+( T>%G]l> 8>IGED D(F0a(A ABBG8>YGED D(F0t(A ABBDH>ԢBEH H(KP (E ABBK [(A AFB8D?IGED D(F0b(A ABBFT?-BBE H(H0K@ 0D(A BBBE m0A(A FBB8?IGED D(F0b(A ABBF8@aGED D(F0v(A ABBJ<P@ܤyGED D(G0O(A ABBHH@BBE I(H0K8K` 8E0A(B BBBE 8@`IGED D(F0b(A ABBFHAtBBE B(H0H8KP 8F0A(B BBBD 8dAIGED D(F0b(A ABBFHAAG@ AI t AK 1 AF J EI J AE HAPAG0 AC q AF B AE J EA J AE 8BĬGJPB̬GJhBԬGJBܬ 0BجvAD@O EAH `Bt$D _BD UB(D cCD U(CD U(@CAG0J AM AlCDQCSAG }ACد/AG ]ACD UCB\ ]C(CD z( D`AG V AI XA$8DİiBFG0IAK`D NAG DAD<DIDD3D g A DhAG _ AE lDBFB A(A0Gpg 0D(A BBBK V 0D(A BBBG / 0D(A BBBA HE&IXLdE BFG E(D0A8J 8A0A(E BBBA 8ERBED A(G`k (A ABBD 0Eka L nJHA G L<$F&AG  AL l AK L AC O DE dFWAG AA FIO0 EA ,FCAGP# AD _ AH FAG@ DD F_D ZGD ,G(@GVBAG@CFB lG L@ M r E 0GMGG T ABF hHG(ZBBB B(D0A8D@} 8D0A(B BBBE HH<BBB B(D0A8DPm 8D0A(B BBBE x\HBDB B(A0A8DP 8A0A(B BBBD C 8A0A(B BBBC a 8A0A(B BBBE xHBDB B(A0A8DP 8A0A(B BBBC B 8A0A(B BBBD ` 8A0A(B BBBF (TIIACD g AAG HI,BBB B(D0D8D`b 8A0A(B BBBH IBBB B(D0D8DP 8A0A(B BBBE  8A0A(B BBBC d 8A0A(B BBBB m 8A0A(B BBBA ddJX{BBB B(A0A8GP 8A0A(B BBBF I 8A0A(B BBBE xJp`BBE B(A0A8DPR 8K0A(B BBBI _ 8A0A(B BBBG L 8A0A(B BBBJ ,HKTwKHE }ABH`xKBIB B(A0D8D`n 8A0A(B BBBA S8A0A(B BBBdK2BBB B(D0A8Du 8A0A(B BBBH  8C0A(B BBBE LDL:BBB B(A0A8Gb 8A0A(B BBBC LLBBB F(D0D8G 8D0A(B BBBB L` j"P"{ - h=x{ { o`X N  x@06} o5oo3o{ 6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfvdefault_rng(seed=None) Construct a new Generator with the default BitGenerator (PCG64). Parameters ---------- seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the `BitGenerator`. If None, then fresh, unpredictable entropy will be pulled from the OS. If an ``int`` or ``array_like[ints]`` is passed, then it will be passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also pass in a `SeedSequence` instance. Additionally, when passed a `BitGenerator`, it will be wrapped by `Generator`. If passed a `Generator`, it will be returned unaltered. Returns ------- Generator The initialized generator object. Notes ----- If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator` is instantiated. This function does not manage a default global instance. See :ref:`seeding_and_entropy` for more information about seeding. Examples -------- ``default_rng`` is the recommended constructor for the random number class ``Generator``. Here are several ways we can construct a random number generator using ``default_rng`` and the ``Generator`` class. Here we use ``default_rng`` to generate a random float: >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use ``default_rng`` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None See Also -------- permuted permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> rng.shuffle(arr) >>> arr array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destination of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------ ValueError If any value in ``alpha`` is less than zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : array-like of floats Probabilities of each of the ``p`` different outcomes with shape ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1 dimension where pvals.shape[-1] > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn each with ``p`` elements. Default is None where the output size is determined by the broadcast shape of ``n`` and all by the final dimension of ``pvals``, which is denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it must be compatible with the broadcast shape ``b``. Specifically, size must have ``q`` or more elements and size[-(q-j):] must equal ``bj``. Returns ------- out : ndarray The drawn samples, of shape size, if provided. When size is provided, the output shape is size + (p,) If not specified, the shape is determined by the broadcast shape of ``n`` and ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of the multinomial, ``p``, so that that output shape is ``(b0, b1, ..., bq, p)``. Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn from the distribution. .. versionchanged:: 1.22.0 Added support for broadcasting `pvals` against `n` Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6]) array([[2, 1, 4, 3, 0, 0], [3, 3, 3, 6, 1, 4]], dtype=int64) # random Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2. >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]]) array([[0, 0, 1], [0, 1, 0]], dtype=int64) # random ``argmax(axis=-1)`` is then used to return the categories. >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]] >>> rvs = rng.multinomial(1, pvals, size=(4,2)) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The same output dimension can be produced using broadcasting. >>> rvs = rng.multinomial([[1]] * 4, pvals) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8, *, method='svd') Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (the squared standard deviation, or "width") of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. method : { 'svd', 'eigh', 'cholesky'}, optional The cov input is used to compute a factor matrix A such that ``A @ A.T = cov``. This argument is used to select the method used to compute the factor matrix A. The default method 'svd' is the slowest, while 'cholesky' is the fastest but less robust than the slowest method. The method `eigh` uses eigen decomposition to compute A and is faster than svd but slower than cholesky. .. versionadded:: 1.18.0 Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. This function internally uses linear algebra routines, and thus results may not be identical (even up to precision) across architectures, OSes, or even builds. For example, this is likely if ``cov`` has multiple equal singular values and ``method`` is ``'svd'`` (default). In this case, ``method='cholesky'`` may be more robust. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively, and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465. >>> cov = np.array([[6, -3], [-3, 3.5]]) >>> pts = rng.multivariate_normal([0, 0], cov, size=800) Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values: >>> pts.mean(axis=0) array([ 0.0326911 , -0.01280782]) # may vary >>> np.cov(pts.T) array([[ 5.96202397, -2.85602287], [-2.85602287, 3.47613949]]) # may vary >>> np.corrcoef(pts.T)[0, 1] -0.6273591314603949 # may vary We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation of the components of this sample. >>> import matplotlib.pyplot as plt >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5) >>> plt.axis('equal') >>> plt.grid() >>> plt.show() logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 <= ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range [0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 # random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(k) = \frac{k^{-a}}{\zeta(a)}, for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 4.0 >>> n = 20000 >>> s = np.random.default_rng().zipf(a, size=n) Display the histogram of the samples, along with the expected histogram based on the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import zeta # doctest: +SKIP `bincount` provides a fast histogram for small integers. >>> count = np.bincount(s) >>> k = np.arange(1, s.max() + 1) >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, ... label='expected count') # doctest: +SKIP >>> plt.semilogy() >>> plt.grid(alpha=0.4) >>> plt.legend() >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expected number of events occurring in a fixed-time interval, must be >= 0. A sequence must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. Because this method internally calls ``Generator.poisson`` with an intermediate random value, a ValueError is raised when the choice of :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled intermediate distribution exceeding the max acceptable value of the ``Generator.poisson`` method. This happens when :math:`p` is too low (a lot of failures happen for every success) and :math:`n` is too big ( a lot of successes are allowed). Therefore, the :math:`n` and :math:`p` values must satisfy the constraint: .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1}, Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution internally used as the :math:`lam` parameter of a poisson sample, and the right side of the equation is the constraint for maximum value of :math:`lam` in ``Generator.poisson``. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 39%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.prod(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a <= 0. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either positive or negative, hence making our test 2-tailed. Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom. We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square root). >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> t -2.8207540608310198 We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom. >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_t(10, size=1000000) >>> h = plt.hist(s, bins=100, density=True) Does our t statistic land in one of the two critical regions found at both tails of the distribution? >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s)) 0.018318 #random < 0.05, statistic is in critical region The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance threshold. Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being true is too low, and we reject the null hypothesis of no deviation. standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.0 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use one of:: mu + sigma * rng.standard_normal(size=...) rng.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 # random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The high limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. high - low must be non-negative. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement. Default is True, meaning that a value of ``a`` can be selected multiple times. p : 1-D array_like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in ``a``. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Notes ----- Setting user-specified probabilities through ``p`` uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of ``p`` is 1 / len(a). Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement: >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False) array([[3, 4, 5], # random [0, 1, 2]]) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> np.random.default_rng().bytes(10) b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. Examples -------- A real world example: Assume a company has 10000 customer support agents and the average time between customer calls is 4 minutes. >>> n = 10000 >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n) What is the probability that a customer will call in the next 4 to 5 minutes? >>> x = ((time_between_calls < 5).sum())/n >>> y = ((time_between_calls < 4).sum())/n >>> x-y 0.08 # may vary References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` use `uniform` or multiply the output of `random` by ``(b - a)`` and add ``a``:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). See Also -------- uniform : Draw samples from the parameterized uniform distribution. Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) spawn(n_children) Create new independent child generators. See :ref:`seedsequence-spawn` for additional notes on spawning children. .. versionadded:: 1.25.0 Parameters ---------- n_children : int Returns ------- child_generators : list of Generators Raises ------ TypeError When the underlying SeedSequence does not implement spawning. See Also -------- random.BitGenerator.spawn, random.SeedSequence.spawn : Equivalent method on the bit generator and seed sequence. bit_generator : The bit generator instance used by the generator. Examples -------- Starting from a seeded default generator: >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}" >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501 >>> rng = np.random.default_rng(entropy) Create two new generators for example for parallel executation: >>> child_rng1, child_rng2 = rng.spawn(2) Drawn numbers from each are independent but derived from the initial seeding entropy: >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform() (0.19029263503854454, 0.9475673279178444, 0.4702687338396767) It is safe to spawn additional children from the original ``rng`` or the children: >>> more_child_rngs = rng.spawn(20) >>> nested_spawn = child_rng1.spawn(20) P H  PPP H0xP H  P0 x0xPP HhPP HP  P  P P PP PP P P PhPhPhP`PPPPx0Px0PP P0P PP0P P HxP@ PX P H   ` Xhx hpa 0  _ ܶ `` 3`$ 7&=@ x@BpQ hx `#X`&P@ H @ 8 0 (   !`      %            ` " 2 * `(  + #   `  _ "  x  p ` h @ ` ` X ` P  H &@ `*8  %0 &(  !  ! @  @    @      L   @" [ ? `0   ]        ÷    [ x  )p  h @ ` ֶ X б P H  @ Ȱ 8 h 0 Y ( 0  @! "   . ) (       _ 7 `F K  I    H  W  W     . 9 )x  p  h X `  X ж P ( H  @  8 ʶ 0  (       ^        U  U    P  0    `)  O  S  S           4x G p 8 h H ` H X  P ` H  @ ݵ 8 T0 @ (     ֵ        % @3 ϵ      E  E            @ $    ȵ   x p p  h  `  X  P  H 8 @  8  0  (       . R  !    }       `    K( 6  ) x p h&` XB P Hд @ 8w 0q (k  e z  @ u  8 _  س p p ȳ  Y Y    k  x` pf h ` Xa PP H d @ 8 0 (X      N N #@! %ȴ  '2I @ ? ? `  `t IxQ pQ h B`@ X P7 H7 @2 8 d '0$(  S S @ 3- - `Y  M = @>  <       M  > '`"x p h ` X PG H @ 8= "0O (O  ` ( . @ ) "    P   # p # : : ]0   x0 p h ` X P4 Hs @ 8. 0( (   h   в   p  " "      `      x p`h ` X P H @ 8@0 (  |  w t@k    O    ط  k !  P \ p Է `N xз pз h` ` X P H̷ @`Y 88 0U (N  G  P  & @ 9 2  ` D   P   M   ȷ  y hj;Dj=F @,{p#{pd{cjP(  D00 " "0 "0;{0{`#x{{|r|@r|P"s|@~#|p{/|P4|{0f{PeA|*"D@#@. P~@%{{^|p@^   @ F`""p+|||0tH{g{gj@,`\pXD k".@ %w0#q|08+|pW|pV|h| z` vR Fz0Px =z@s z `f |d {PU \z,L yB zpL4 z ( zI vpE vA v> v@; v8 v@6` v2` v0` vP-` |v* tv& mv # dv`x Zvg Qv] Lv`S D{0C J z3< z+ Dv" ?v  2{p  -{ 5v  \{ {` { z S{ <{ {f y@uy` wUGCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11) " " 0 "I "E 0#  @# `#  p#( #; @%HM_ %P % & & & `'[( 'P P(l@@ *q p+e +Q @,R ,Ge @.;y .w W` /0 0 kX- BI ?f <~ `@  0e `12 M g%9 Jbu M  1 @2 p  3`3 p5S 6k Y 5j  P +X7F r   (M]x 0: xJ Xv p h ` h X H  P - H= S @c xy 8 h 0  (   / [ k        )  U  e           6  F l  |          P 0 @@e u8  0    *U ex `p /h ?k` {X P H ,@ <h8 x 0 (  , <L \ l    0(  #5 Kd   0  -( P `xuph` 7'! 08 e @8L| : 0;e ; @=t  =u @>x% >4 ?QZ Fz H pK Q V V W, @^FC _(\ `/r a c d h  ik k( k"70 L( fP  @rL rL r & xq p{ { @~ P~WX" 7 DY x  >( `8  $P0 PJVPe  4 e p  \- BV 0o 0  u 79 RX b  K   7   I j @E C  # @ X p  X   4 D  R (^  0 P   p     ,! 8! D! Y! !p!! !! ` ""*"O"^"n" " " " #X#`/# D# `#`#h# # ## # &8$ M$ *$` $ P-$@ $ 0"% 7% 2r%%%%% % @6%  & &З -& 8Jo& & @;&&& & >:'p O' A' ' ' ' '@ (' pE( ,( Ijd(t( (( pL( ( 0P%) 8) Ro) {) )` ) pV)) pW&* pX_* m* {* `\%** ** --+!+` B2+xB+hV+`i+Hv+@+8++(+8++ +X+(  ,h %,A,@ Z, p, ,, ,, ,-8 $-h7-N- c-|- -----P- -.. A.U. r.. `W .. 8. `bb./@ 3/ `p [/@ 8y/ // Аd//080S0n000@0810?1w11x1p2hT2`2X2P2H/3(`3 3334N4u444X458 5H 05@5M5l55` 55855 5 66"6 96 U6`6 w6 6 66 6 66 7  7pB7` v7787P 7@7h !8 L8 v88@ 88 9 I9@m9p 9099 :9:0 e:: ::8  ;7;\; ;;; ;x *<8S<~< < <H =+=( U== == =$> K>v>p >> >?=?Hh? ?@? ?(@` 7@a@ @@@ @ AH-A8XA AAx AB $BOBxB`B B8B #CNC zCC CC 'D QD(zDD DpDX EJE uEpE EXEE @E F@ GF c{F pdF PeF 0f G g3G g[G hV GGG 0tG @u:H(HX 2HEH qH@ H H HH H @D H WFI dI II PIx I  JP /JH KJ@ bJ8 ~J JJ J J( K K ,K8:KPLK ~K K` KX K K L@ L  bLP yLH L@ L8 LLHL M +M  dMP yMH M@ M8 M M@ M z @Np WNh sN` NX N (N N `KNO U ZU qU UpU U U8U U V"V 9V UVcV zV VX V V@ VX V V .0W GW cW sW W W W W Wx  Xp #Xh ?Xx MX_XHnX~XPXX X (X (Y 1Y LY(\Y rY Y Yx Y8 Y Y Y0ZH "Z 06Z LZ gZvZ Z Z Z Z Z Z [0+[ A[ \[l[ [ [ [[ [ 32&\0 =\( Y\` i\ \ \ \ \ \ ] ] .] J] a] }] f%]0 ]( ]@ ] ^ 2^( D^xV^ m^ ^^ ^ ^^ ^ _ -_ I_X_ m_ |_ _ _ sX_ ` !` 8` T` k` ` `x ``8 `@ a8 .aAa0 Xa( ta a a (a@ a` aX b bP 3bH Ob{bbp bh b b *c ^dcxc cx chcp ch c d $d ;d Wd` ndX dP dH ddd`e'e >e Ze qe ee(e` e 0C&f f ;f Rf nf}ff f f f f  g &g =gx Yg( ig@ (~g i/Dg@ g8 g0 h( h 0h?h Qh hh h h h h hPh0hh 9i@ Ni ipiih i` iX iP  jH &j` 9j@ Pj8 lj0 j( j j jHj 8jkk )k Ek Vkxdkx{kPkPk k kh k k l #l0 /lp >lh Ql hl l l l l ll m m ;m G:tm m m m mm m n%n ;n Vn ln n n n n n n0 o ox 8op Noh io` oX oP oH oo@ o8  pP!p4p `p qpHppphp p p p qP 0qH Kq0 aq( |q q q q q q  r 'r =r Xr sr r r rrrHr`s s 1s@ Gs8 bs0 xs( s s s sx sp  th &t5t` KtX ft ht Pitt 8t |iu.u=u Tu puu uu u u u  v !v =v Tv pv v v v v v  ww -w Iw `wx |wp wh ww ww  xp $xOx ^x hnx a xx 0 x x _ x ܶ x `` 3x `$x 7"y &Ky =ty @ y @By Q y x y #!z `&Jz @ \z z z z z { !7{ ` U{ w{ { { %{  | 1| V| || | ` "| 2| *} `(E} +n} #} } ` } _ "~ *~ N~ ` p~ @ ~ ` ~ ` ~ ~ &% `*N %w & ! ! @  @ 6 W @ {   Lـ  @" [> ?g `0  ]  Ё   ÷  8 [ B )k  @  ֶ  б    Ȱ  h + Y 5 0 G @!p "  . ) (? S f ~ _ 7 `Fτ K ڄ I    H  W  * .S 9| )     X ΅  ж  (    ʶ - H X r  ^    Ɔ ӆ U ݆  P  0 ( 5 `)^ O  S     ć 4 G  8 = H N \ ` w  ݵ  TLj @    ֵ ! / E  Q %z @3 ϵ  Ɖ  E      @ $ ?  K ȵ Z h p      8 Ί ܊     # . R K !  s  }     ΋ ۋ `    0  KX ( i 6  )ʌ  ܌     &# K B V eHw д @  w  q Í k э e ߍ z    @ % u 2 8Z k _ y  س  p  p  ȳ ̎  Y    1 k > P ` c f p | a  P  d ď     X - ?P _ k  N  # @!  %/ ȴ ? N 'w 2 I  @  ? ˑ `   `t IC Q M Bv @   7  2  d 'Ԓ $   S  @ 2 3[ - h `Y  M =  @>   <   ; _   M  Ȕ > ' `" . N Z   G   Ε = " O  `   ( - . U @ c ) "   – Ӗ  P   : #c  p  #  : Ɨ ] 0   2 0 E W h   4  s  ژ .  (     h - > T в f v  p   " ̙ ܙ       `   & 7  O  ] m `       ʚ ؚ @     | G w tn @k    ՛ O     & 3 ط ? Z k !   P Ü \ Ҝ p  Է  `N * з 6 ` G T a q ̷ } `Y  8  U  N Ν G ݝ  P  &:  b @ q 9  2    ` D ޞ  P   $ 6 M @ \ j ȷ v    0Ÿ ` P P  ? ] v  ` P נ  @ P@ L x `  @+x R j@s t`f d 'U aL B  ߣ4  ( [   ɤ =  F  ѥ` O` K` `   4 )nx d g ]  #S D [ J Y < ը+ '" U  Kʩ   I I` Ϫ  $ [  ҫ "` h C !E "X P"n z{  "x{ ̬ ֬        # , 5 >  FX\ T  g } { { 8`X3506@    h= @  ` x{ { { { }  @  ʭ߭ #5A_ 0Bnz  ! Ǯܮ , BUfs֯ 032  -{7 FYl x  _˰ h=Ѱ ` @3&  2G Uey Iűձ 0 . /`Has C̲ (;I_  (س 0GVq @  /̴޴  yFTa 0} aϵ"$4F[q @%ʶ +:GYk C÷Ϸ p6: .<]o !θ߸& &DWh I 0+ p  ѹ p  (AOm @ &  `̺غ "9I 2wbp $ǻӻ ( P"Z N );Ra <n 0V  ͼ Y->Xm   Iҽ p `i1JVdz ` PIžѾݾ 8 2%3J Ys  Ŀ׿  1Mas S 'I & P p$3>P] -{ R/?U Ix ~ PW__pyx_array___len____pyx_MemviewEnum___repr____pyx_memoryview___len____pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__pyx_tp_traverse_Enum__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryviewslice_base__pyx_typeinfo_cmp__pyx_tp_new_Enum__pyx_empty_tuple__pyx_tp_new_5numpy_6random_10_generator_Generator__Pyx_PyObject_SetAttrStr__Pyx_PyObject_Call__Pyx_PyObject_GetAttrStr__Pyx_PyObject_LookupSpecial__pyx_f_5numpy_6random_10_generator__shuffle_int__Pyx_PyNumber_IntOrLongWrongResultType__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__pyx_tp_dealloc_Enum__pyx_sq_item_array__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__Pyx_GetException__pyx_tp_clear_Enum__pyx_tp_clear_5numpy_6random_10_generator_Generator__Pyx_setup_reduce_is_named__pyx_n_s_name__Pyx_Import__pyx_m__pyx_tp_clear_memoryview__Pyx_SetVtable__pyx_n_s_pyx_vtable__Pyx_ImportVoidPtr_0_29_36__Pyx_ImportFunction_0_29_36__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.0__pyx_tp_traverse_memoryview__Pyx_IterFinish.part.0__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce__pyx_n_s_getstate__pyx_n_s_reduce_ex__pyx_n_s_reduce__pyx_n_s_reduce_cython__pyx_n_s_setstate__pyx_n_s_setstate_cython__Pyx_ImportType_0_29_36.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__pyx_fatalerror.constprop.0__func__.308__Pyx_ParseOptionalKeywords.constprop.0__Pyx_PyObject_Call.constprop.0__Pyx_Raise.constprop.0__Pyx_PyCode_New.constprop.0__Pyx_InitCachedConstants__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple___pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__8__pyx_int_4294967296__pyx_int_0__pyx_tuple__9__pyx_kp_u_a_must_be_a_positive_integer_unl__pyx_tuple__10__pyx_kp_u_a_cannot_be_empty_unless_no_samp__pyx_tuple__11__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__12__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__13__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__14__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__15__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__16__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__17__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__18__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__19__pyx_tuple__20__pyx_tuple__21__pyx_kp_u_high_low_range_exceeds_valid_bou__pyx_tuple__22__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__23__pyx_kp_u_left_mode__pyx_tuple__26__pyx_kp_u_mode_right__pyx_tuple__27__pyx_kp_u_left_right__pyx_tuple__28__pyx_kp_u_n_too_large_or_p_too_small_see_G__pyx_tuple__29__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__30__pyx_kp_u_method_must_be_one_of_eigh_svd_c__pyx_tuple__31__pyx_kp_u_mean_and_cov_must_not_be_complex__pyx_tuple__32__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__33__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__34__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__35__pyx_slice__36__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__37__pyx_builtin_RuntimeWarning__pyx_kp_u_covariance_is_not_symmetric_posi__pyx_tuple__38__pyx_tuple__39__pyx_kp_u_pvals_must_have_at_least_1_dimen__pyx_tuple__40__pyx_kp_u_method_must_be_count_or_marginal__pyx_tuple__42__pyx_kp_u_nsample_must_be_an_integer__pyx_tuple__43__pyx_kp_u_nsample_must_be_nonnegative__pyx_tuple__44__pyx_kp_u_When_method_is_marginals_sum_col__pyx_tuple__45__pyx_kp_u_nsample_sum_colors__pyx_tuple__46__pyx_kp_u_alpha_0__pyx_tuple__47__pyx_kp_u_out_must_be_a_numpy_array__pyx_tuple__48__pyx_kp_u_out_must_have_the_same_shape_as__pyx_tuple__49__pyx_kp_u_memory_allocation_failed_in_perm__pyx_tuple__50__pyx_kp_u_array_is_read_only__pyx_tuple__51__pyx_tuple__52__pyx_kp_u_Axis_argument_is_only_supported__pyx_tuple__53__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__54__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_tuple__56__pyx_kp_s_itemsize_0_for_cython_array__pyx_tuple__57__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_tuple__58__pyx_kp_s_unable_to_allocate_array_data__pyx_tuple__59__pyx_kp_s_Can_only_create_a_buffer_that_is__pyx_tuple__60__pyx_kp_s_no_default___reduce___due_to_non__pyx_tuple__61__pyx_tuple__62__pyx_kp_s_Cannot_assign_to_read_only_memor__pyx_tuple__63__pyx_kp_s_Unable_to_convert_item_to_object__pyx_tuple__64__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_tuple__65__pyx_kp_s_Buffer_view_does_not_expose_stri__pyx_tuple__66__pyx_tuple__67__pyx_int_neg_1__pyx_tuple__68__pyx_tuple__69__pyx_kp_s_Indirect_dimensions_not_supporte__pyx_tuple__70__pyx_tuple__71__pyx_tuple__72__pyx_int_112105877__pyx_int_136983863__pyx_int_184977713__pyx_tuple__73__pyx_n_s_seed__pyx_empty_bytes__pyx_n_s_default_rng__pyx_kp_s_generator_pyx__pyx_kp_s_strided_and_direct_or_indirect__pyx_tuple__76__pyx_kp_s_strided_and_direct__pyx_tuple__77__pyx_kp_s_strided_and_indirect__pyx_tuple__78__pyx_kp_s_contiguous_and_direct__pyx_tuple__79__pyx_kp_s_contiguous_and_indirect__pyx_tuple__80__pyx_n_s_pyx_result__pyx_n_s_pyx_PickleError__pyx_n_s_pyx_state__pyx_n_s_pyx_checksum__pyx_n_s_pyx_type__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_stringsource_copy_strided_to_strided.isra.0__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_PyUnicode_Equals__Pyx_IternextUnpackEndCheck__pyx_sq_item_memoryview__pyx_tp_dealloc__memoryviewslice__Pyx_GetBuiltinName__pyx_b__pyx_tp_traverse__memoryviewslice__Pyx_ImportFrom__Pyx_TypeTest__pyx_memoryview__slice_assign_scalar__pyx_tp_clear__memoryviewslice__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__PyObject_CallOneArg__Pyx_PyObject_CallOneArg__pyx_memoryview_refcount_objects_in_slice__pyx_tp_dealloc_array__Pyx_PyObject_Call2Args__Pyx_PyInt_As_size_t__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_PyObject_GetIndex__Pyx_PyObject_CallNoArg__Pyx_PyInt_As_Py_intptr_t.part.0__Pyx__GetModuleGlobalName__pyx_d__Pyx_AddTraceback__pyx_cython_runtime__pyx_dict_version.2__pyx_dict_cached_value.1__pyx_n_s_cline_in_traceback__pyx_code_cache__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_memoryview_get_slice_from_memoryview__pyx_memoryviewslice_type__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_MemviewEnum___init____pyx_n_s_name_2__pyx_pyargnames.307__pyx_getprop___pyx_array_memview__pyx_unpickle_Enum__set_state__pyx_n_s_dict__pyx_n_s_update__pyx_memoryview_getbuffer__pyx_builtin_ValueError__pyx_array_getbuffer__pyx_n_u_c__pyx_n_u_fortran__pyx_getprop___pyx_memoryview_size__pyx_int_1__pyx_getprop___pyx_memoryview_nbytes__pyx_n_s_size__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_strides__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_fromslice__pyx_n_s_base__pyx_memoryview_copy_object_from_slice__pyx_memoryview_err__pyx_empty_unicode__pyx_memslice_transpose__pyx_getprop___pyx_memoryview_T__pyx_memoryview_new__pyx_memoryview_type__pyx_memoryview_err_dim__pyx_memoryview_copy_contents__pyx_kp_s_got_differing_extents_in_dimensi__pyx_builtin_MemoryError__pyx_memoryview___str____pyx_n_s_class__pyx_kp_s_MemoryView_of_r_object__pyx_memoryview___repr____pyx_builtin_id__pyx_kp_s_MemoryView_of_r_at_0x_x__pyx_memoryview_assign_item_from_object__pyx_n_s_struct__pyx_n_s_pack__pyx_memoryviewslice_assign_item_from_object__pyx_memoryview_setitem_indexed__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview_is_slice__pyx_builtin_TypeError__pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_tp_getattro_array__pyx_n_s_memview__pyx_mp_ass_subscript_array__pyx_array___getitem____pyx_array_get_memview__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_n_s_capsule__pyx_n_s_lock__pyx_n_s_bit_generator__pyx_pyargnames.301__pyx_pw_5numpy_6random_10_generator_9Generator_85logseries__pyx_float_0_0__pyx_kp_u__5__pyx_n_u_p__pyx_f_5numpy_6random_7_common_disc__pyx_n_s_p__pyx_pyargnames.181__pyx_pw_5numpy_6random_10_generator_9Generator_81geometric__pyx_pyargnames.169__pyx_pw_5numpy_6random_10_generator_9Generator_79zipf__pyx_n_u_a__pyx_n_s_a__pyx_pyargnames.168__pyx_pw_5numpy_6random_10_generator_9Generator_77poisson__pyx_float_1_0__pyx_n_u_lam__pyx_pyargnames.167__pyx_n_s_lam__pyx_pw_5numpy_6random_10_generator_9Generator_69wald__pyx_n_u_scale__pyx_n_u_mean__pyx_f_5numpy_6random_7_common_cont__pyx_n_s_mean__pyx_n_s_scale__pyx_pyargnames.133__pyx_pw_5numpy_6random_10_generator_9Generator_67rayleigh__pyx_pyargnames.132__pyx_pw_5numpy_6random_10_generator_9Generator_65lognormal__pyx_n_u_sigma__pyx_n_s_sigma__pyx_pyargnames.131__pyx_pw_5numpy_6random_10_generator_9Generator_63logistic__pyx_n_u_loc__pyx_n_s_loc__pyx_pyargnames.130__pyx_pw_5numpy_6random_10_generator_9Generator_61gumbel__pyx_pyargnames.129__pyx_pw_5numpy_6random_10_generator_9Generator_59laplace__pyx_pyargnames.128__pyx_pw_5numpy_6random_10_generator_9Generator_57power__pyx_pyargnames.127__pyx_pw_5numpy_6random_10_generator_9Generator_55weibull__pyx_pyargnames.126__pyx_pw_5numpy_6random_10_generator_9Generator_53pareto__pyx_pyargnames.125__pyx_pw_5numpy_6random_10_generator_9Generator_51vonmises__pyx_n_u_kappa__pyx_n_u_mu__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.124__pyx_pw_5numpy_6random_10_generator_9Generator_49standard_t__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.123__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_cauchy__pyx_pyargnames.122__pyx_pw_5numpy_6random_10_generator_9Generator_45noncentral_chisquare__pyx_n_u_nonc__pyx_n_s_nonc__pyx_pyargnames.121__pyx_pw_5numpy_6random_10_generator_9Generator_43chisquare__pyx_pyargnames.120__pyx_pw_5numpy_6random_10_generator_9Generator_41noncentral_f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_n_s_dfden__pyx_pyargnames.119__pyx_pw_5numpy_6random_10_generator_9Generator_39f__pyx_pyargnames.118__pyx_pw_5numpy_6random_10_generator_9Generator_37gamma__pyx_n_u_shape__pyx_pyargnames.117__pyx_n_s_shape__pyx_pw_5numpy_6random_10_generator_9Generator_33normal__pyx_pyargnames.111__pyx_pw_5numpy_6random_10_generator_9Generator_19exponential__pyx_pyargnames.9__pyx_pw_5numpy_6random_10_generator_9Generator_17beta__pyx_n_u_b__pyx_n_s_b__pyx_pyargnames.8__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_n_s_state__pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_kp_u__2__pyx_kp_u__3__pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_n_s_str__pyx_kp_u_at_0x_X__pyx_n_s_format__pyx_pymod_exec__generator__pyx_assertions_enabled_flag__pyx_string_tab__pyx_float_0_1__pyx_float_1eneg_8__pyx_float_1_0001__pyx_int_10__pyx_int_20__pyx_int_50__pyx_int_1000000000__pyx_n_s_main__pyx_n_s_range__pyx_n_s_reversed__pyx_n_s_ValueError__pyx_n_s_id__pyx_n_s_TypeError__pyx_n_s_OverflowError__pyx_builtin_OverflowError__pyx_n_s_RuntimeWarning__pyx_n_s_MemoryError__pyx_n_s_UserWarning__pyx_builtin_UserWarning__pyx_n_s_NotImplementedError__pyx_builtin_NotImplementedError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_s_enumerate__pyx_n_s_Ellipsis__pyx_builtin_Ellipsis__pyx_n_s_IndexError__pyx_builtin_IndexError__pyx_type_5numpy_6random_10_generator_Generatorgenericstridedindirect_contiguous__pyx_n_s_Generator__pyx_type___pyx_array__pyx_ptype_5numpy_6random_10_generator_Generator__pyx_vtable_array__pyx_vtabptr_array__pyx_type___pyx_MemviewEnum__pyx_array_type__pyx_memoryview_get_item_pointer__pyx_MemviewEnum_type__pyx_vtable_memoryview__pyx_memoryview_setitem_slice_assignment__pyx_vtabptr_memoryview__pyx_type___pyx_memoryview__pyx_memoryview_convert_item_to_object__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vtabptr__memoryviewslice__pyx_memoryviewslice_convert_item_to_object__pyx_ptype_5numpy_dtype__pyx_ptype_5numpy_flatiter__pyx_ptype_5numpy_broadcast__pyx_ptype_5numpy_ndarray__pyx_ptype_5numpy_integer__pyx_ptype_5numpy_floating__pyx_ptype_5numpy_complexfloating__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_f_5numpy_6random_7_common_check_constraint__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_f_5numpy_6random_7_common_double_fill__pyx_f_5numpy_6random_7_common_float_fill__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_f_5numpy_6random_7_common_cont_f__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_n_s_operator__pyx_n_s_warnings__pyx_n_s_Sequence__pyx_n_s_collections_abc__pyx_n_s_numpy__pyx_n_s_np__pyx_n_s_normalize_axis_index__pyx_n_s_numpy_core_multiarray__pyx_n_s_PCG64__pyx_n_s_pcg64PyArray_API__pyx_n_s_poisson_lam_max__pyx_dict_version.324__pyx_dict_cached_value.323__pyx_n_s_float64__pyx_k__4__pyx_dict_version.322__pyx_dict_cached_value.321__pyx_k__6__pyx_dict_version.320__pyx_dict_cached_value.319__pyx_n_s_int64__pyx_k__7__pyx_dict_version.318__pyx_dict_cached_value.317__pyx_k__24__pyx_dict_version.316__pyx_dict_cached_value.315__pyx_n_s_numpy_random__generator__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_k__25__pyx_kp_u_spawn_n_children_Create_new_ind__pyx_kp_u_Generator_spawn_line_241__pyx_kp_u_random_size_None_dtype_np_float__pyx_kp_u_Generator_random_line_299__pyx_kp_u_exponential_scale_1_0_size_None__pyx_kp_u_Generator_exponential_line_405__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_Generator_standard_exponential_l__pyx_kp_u_integers_low_high_None_size_Non__pyx_kp_u_Generator_integers_line_526__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_Generator_bytes_line_653__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_Generator_choice_line_682__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_Generator_uniform_line_945__pyx_kp_u_standard_normal_size_None_dtype__pyx_kp_u_Generator_standard_normal_line_1__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_normal_line_1123__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_Generator_standard_gamma_line_12__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_Generator_gamma_line_1317__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_Generator_f_line_1395__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_Generator_noncentral_f_line_1483__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_Generator_chisquare_line_1561__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_Generator_standard_cauchy_line_1__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_Generator_standard_t_line_1774__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_Generator_vonmises_line_1880__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_Generator_pareto_line_1963__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_Generator_weibull_line_2061__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_Generator_power_line_2160__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_laplace_line_2261__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_gumbel_line_2346__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_logistic_line_2465__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_Generator_lognormal_line_2545__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_Generator_rayleigh_line_2657__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_Generator_wald_line_2726__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_Generator_triangular_line_2794__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_Generator_binomial_line_2894__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_Generator_negative_binomial_line__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_Generator_poisson_line_3162__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_Generator_zipf_line_3235__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_Generator_geometric_line_3323__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_Generator_hypergeometric_line_33__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_Generator_logseries_line_3517__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_Generator_multivariate_normal_li__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_Generator_multinomial_line_3838__pyx_kp_u_multivariate_hypergeometric_col__pyx_kp_u_Generator_multivariate_hypergeom__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_Generator_dirichlet_line_4300__pyx_kp_u_permuted_x_axis_None_out_None_R__pyx_kp_u_Generator_permuted_line_4498__pyx_kp_u_shuffle_x_axis_0_Modify_an_arra__pyx_kp_u_Generator_shuffle_line_4658__pyx_kp_u_permutation_x_axis_0_Randomly_p__pyx_kp_u_Generator_permutation_line_4790__pyx_kp_u_Construct_a_new_Generator_with_t__pyx_kp_u_default_rng_line_4863__pyx_n_s_test__pyx_n_s_pyx_getbuffer__pyx_t_4.314__pyx_n_s_View_MemoryView__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_n_s_generator_ctor__pyx_n_s_pickle__pyx_array___getattr____pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_n_s_new__pyx_n_s_PickleError__pyx_n_s_pickle_2__pyx_kp_s_Incompatible_checksums_0x_x_vs_0__pyx_pyargnames.313__Pyx_PyInt_As_Py_intptr_t__Pyx_PyInt_As_int64_t__pyx_n_s_unpack__pyx_n_s_error__pyx_memoryview_copy_new_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_kp_s_Out_of_bounds_on_buffer_access_a__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_dict_version.306__pyx_dict_cached_value.305__pyx_dict_version.304__pyx_dict_cached_value.303__pyx_pw_5numpy_6random_10_generator_9Generator_25bytes__pyx_n_s_integers__pyx_dict_version.37__pyx_dict_cached_value.36__pyx_n_s_uint32__pyx_n_s_dtype__pyx_n_s_astype__pyx_kp_u_u4__pyx_n_s_tobytes__pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_n_u_capsule__pyx_dict_version.311__pyx_dict_cached_value.310__pyx_pyargnames.312__pyx_pw_5numpy_6random_10_generator_9Generator_13spawn__pyx_n_s_spawn__pyx_pw_5numpy_6random_10_generator_9Generator_31standard_normal__pyx_dict_version.109__pyx_dict_cached_value.108__pyx_dict_version.107__pyx_dict_cached_value.106__pyx_n_s_float32__pyx_n_s_out__pyx_kp_u_Unsupported_dtype_r_for_standard_2__pyx_pyargnames.110__pyx_pw_5numpy_6random_10_generator_9Generator_15random__pyx_dict_version.6__pyx_dict_cached_value.5__pyx_dict_version.4__pyx_dict_cached_value.3__pyx_kp_u_Unsupported_dtype_r_for_random__pyx_pyargnames.7__pyx_pw_5numpy_6random_10_generator_9Generator_35standard_gamma__pyx_dict_version.115__pyx_dict_cached_value.114__pyx_dict_version.113__pyx_dict_cached_value.112__pyx_pyargnames.116__pyx_kp_u_Unsupported_dtype_r_for_standard_3_unellipsify__pyx_kp_s_Cannot_index_with_type_s__pyx_mp_ass_subscript_memoryview__pyx_pw_5numpy_6random_10_generator_9Generator_21standard_exponential__pyx_n_u_zig__pyx_dict_version.13__pyx_dict_cached_value.12__pyx_dict_version.11__pyx_dict_cached_value.10__pyx_n_s_method__pyx_kp_u_Unsupported_dtype_r_for_standard__pyx_pyargnames.14__pyx_tp_new_memoryview__pyx_n_s_flags__pyx_pyargnames.309__pyx_n_s_dtype_is_object__pyx_n_s_obj__pyx_tp_new__memoryviewslice__pyx_pw_5numpy_6random_10_generator_9Generator_29uniform__pyx_dict_version.102__pyx_dict_cached_value.101__pyx_n_s_subtract__pyx_dict_version.104__pyx_dict_cached_value.103__pyx_n_s_isfinite__pyx_kp_u_high_low__pyx_n_s_high__pyx_dict_version.100__pyx_dict_cached_value.99__pyx_n_s_all__pyx_dict_version.98__pyx_dict_cached_value.97__pyx_n_s_low__pyx_pyargnames.105__pyx_tp_new_array__pyx_n_s_c__pyx_n_s_encode__pyx_n_s_ASCII__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_n_s_fortran__pyx_n_b_O__pyx_n_s_itemsize__pyx_n_s_mode__pyx_n_s_allocate_buffer__pyx_pyargnames.302__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_n_s_ndim__pyx_memview_slice__pyx_n_s_start__pyx_n_s_stop__pyx_n_s_step__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_75negative_binomial__pyx_n_u_n__pyx_n_s_n__pyx_dict_version.165__pyx_dict_cached_value.164__pyx_n_s_sqrt__pyx_dict_version.163__pyx_dict_cached_value.162__pyx_n_s_any__pyx_dict_version.161__pyx_dict_cached_value.160__pyx_n_s_greater__pyx_pyargnames.166__pyx_pw_5numpy_6random_10_generator_9Generator_93dirichlet__pyx_dict_version.258__pyx_dict_cached_value.257__pyx_dict_version.256__pyx_dict_cached_value.255__pyx_n_s_less__pyx_dict_version.254__pyx_dict_cached_value.253__pyx_n_s_index__pyx_dict_version.252__pyx_dict_cached_value.251__pyx_n_s_zeros__pyx_dict_version.250__pyx_dict_cached_value.249__pyx_n_s_max__pyx_dict_version.248__pyx_dict_cached_value.247__pyx_n_s_empty_like__pyx_n_s_exit__pyx_n_s_enter__pyx_n_s_alpha__pyx_pyargnames.259__pyx_pw_5numpy_6random_10_generator_9Generator_83hypergeometric__pyx_dict_version.179__pyx_dict_cached_value.178__pyx_n_s_ngood__pyx_dict_version.177__pyx_dict_cached_value.176__pyx_dict_version.175__pyx_dict_cached_value.174__pyx_dict_version.173__pyx_dict_cached_value.172__pyx_dict_version.171__pyx_dict_cached_value.170__pyx_n_s_add__pyx_n_u_nsample__pyx_n_u_nbad__pyx_n_u_ngood__pyx_n_s_nbad__pyx_n_s_nsample__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_pyargnames.180__pyx_pw_5numpy_6random_10_generator_9Generator_23integers__pyx_dict_version.34__pyx_dict_cached_value.33__pyx_n_s_int32__pyx_dict_version.32__pyx_dict_cached_value.31__pyx_dict_version.16__pyx_dict_cached_value.15__pyx_n_s_array__pyx_dict_version.30__pyx_dict_cached_value.29__pyx_n_s_int16__pyx_n_s_endpoint__pyx_pyargnames.35__pyx_dict_version.28__pyx_dict_cached_value.27__pyx_n_s_int8__pyx_dict_version.26__pyx_dict_cached_value.25__pyx_n_s_uint64__pyx_dict_version.24__pyx_dict_cached_value.23__pyx_dict_version.22__pyx_dict_cached_value.21__pyx_n_s_uint16__pyx_dict_version.20__pyx_dict_cached_value.19__pyx_n_s_uint8__pyx_dict_version.18__pyx_dict_cached_value.17__pyx_n_s_bool__pyx_n_s_isnative__pyx_kp_u_Unsupported_dtype_r_for_integers__pyx_pw_5numpy_6random_10_generator_9Generator_73binomial__pyx_dict_version.158__pyx_dict_cached_value.157__pyx_n_s_empty__pyx_dict_version.156__pyx_dict_cached_value.155__pyx_dict_version.150__pyx_dict_cached_value.149__pyx_dict_version.148__pyx_dict_cached_value.147__pyx_pyargnames.159__pyx_dict_version.154__pyx_dict_cached_value.153__pyx_dict_version.152__pyx_dict_cached_value.151__pyx_pw_5numpy_6random_10_generator_9Generator_99permutation__pyx_dict_version.299__pyx_dict_cached_value.298__pyx_n_s_arange__pyx_dict_version.297__pyx_dict_cached_value.296__pyx_n_s_asarray__pyx_n_s_shuffle__pyx_dict_version.295__pyx_dict_cached_value.294__pyx_n_s_x__pyx_dict_version.293__pyx_dict_cached_value.292__pyx_n_s_may_share_memory__pyx_dict_version.289__pyx_dict_cached_value.288__pyx_dict_version.287__pyx_dict_cached_value.286__pyx_n_s_intp__pyx_pyargnames.300__pyx_n_s_axis__pyx_dict_version.291__pyx_dict_cached_value.290__pyx_pw_5numpy_6random_10_generator_9Generator_91multivariate_hypergeometric__pyx_n_u_marginals__pyx_n_u_count__pyx_dict_version.245__pyx_dict_cached_value.244__pyx_dict_version.243__pyx_dict_cached_value.242__pyx_dict_version.241__pyx_dict_cached_value.240__pyx_n_s_issubdtype__pyx_kp_u_colors_must_be_a_one_dimensional__pyx_dict_version.233__pyx_dict_cached_value.232__pyx_n_s_isscalar__pyx_dict_version.231__pyx_dict_cached_value.230__pyx_dict_version.229__pyx_dict_cached_value.228__pyx_pyargnames.246__pyx_n_s_colors__pyx_dict_version.237__pyx_dict_cached_value.236__pyx_n_s_ascontiguousarray__pyx_dict_version.235__pyx_dict_cached_value.234__pyx_kp_u_sum_colors_must_not_exceed_the_m__pyx_kp_u_nsample_must_not_exceed_d__pyx_dict_version.239__pyx_dict_cached_value.238__pyx_kp_u_When_method_is_count_sum_colors__pyx_kp_u_Insufficient_memory_for_multivar__pyx_pw_5numpy_6random_10_generator_9Generator_97shuffle__pyx_n_s_writeable__pyx_dict_version.276__pyx_dict_cached_value.275__pyx_n_s_swapaxes__pyx_dict_version.274__pyx_dict_cached_value.273__pyx_dict_version.284__pyx_dict_cached_value.283__pyx_dict_version.282__pyx_dict_cached_value.281__pyx_dict_version.272__pyx_dict_cached_value.271__pyx_dict_version.270__pyx_dict_cached_value.269__pyx_n_s_warn__pyx_kp_u_you_are_shuffling_a__pyx_kp_u_object_which_is_not_a_subclass__pyx_n_s_strides__pyx_dict_version.280__pyx_dict_cached_value.279__pyx_dict_version.278__pyx_dict_cached_value.277__pyx_n_s_hasobject__pyx_n_s_stacklevel__pyx_pyargnames.285__pyx_pw_5numpy_6random_10_generator_9Generator_71triangular__pyx_dict_version.145__pyx_dict_cached_value.144__pyx_dict_version.143__pyx_dict_cached_value.142__pyx_n_s_left__pyx_n_s_right__pyx_dict_version.141__pyx_dict_cached_value.140__pyx_dict_version.139__pyx_dict_cached_value.138__pyx_dict_version.137__pyx_dict_cached_value.136__pyx_dict_version.135__pyx_dict_cached_value.134__pyx_n_s_equal__pyx_pyargnames.146__pyx_pf_5numpy_6random_10_generator_9Generator_94permuted__pyx_dict_version.267__pyx_dict_cached_value.266__pyx_dict_version.265__pyx_dict_cached_value.264__pyx_n_s_copyto__pyx_n_u_safe__pyx_n_s_casting__pyx_dict_version.263__pyx_dict_cached_value.262__pyx_dict_version.261__pyx_dict_cached_value.260__pyx_n_s_copy__pyx_n_u_K__pyx_n_s_order__pyx_n_s_ravel__pyx_n_u_A__pyx_pw_5numpy_6random_10_generator_9Generator_95permuted__pyx_pyargnames.268__pyx_pw_5numpy_6random_10_generator_9Generator_87multivariate_normal__pyx_n_u_svd__pyx_n_u_warn__pyx_n_u_eigh__pyx_dict_version.203__pyx_dict_cached_value.202__pyx_dict_version.201__pyx_dict_cached_value.200__pyx_n_u_cholesky__pyx_dict_version.199__pyx_dict_cached_value.198__pyx_dict_version.197__pyx_dict_cached_value.196__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.204__pyx_n_s_standard_normal__pyx_n_s_reshape__pyx_dict_version.195__pyx_dict_cached_value.194__pyx_n_s_double__pyx_n_s_svd__pyx_n_s_numpy_linalg__pyx_n_u_ignore__pyx_n_u_raise__pyx_dict_version.193__pyx_dict_cached_value.192__pyx_n_s_allclose__pyx_dict_version.191__pyx_dict_cached_value.190__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_eigh__pyx_n_s_cholesky__pyx_dict_version.185__pyx_dict_cached_value.184__pyx_dict_version.189__pyx_dict_cached_value.188__pyx_dict_version.183__pyx_dict_cached_value.182__pyx_n_s_rtol__pyx_n_s_atol__pyx_dict_version.187__pyx_dict_cached_value.186__pyx_pf_5numpy_6random_10_generator_9Generator_26choice__pyx_dict_version.95__pyx_dict_cached_value.94__pyx_dict_version.93__pyx_dict_cached_value.92__pyx_n_s_item__pyx_dict_version.89__pyx_dict_cached_value.88__pyx_n_s_prod__pyx_dict_version.91__pyx_dict_cached_value.90__pyx_dict_version.87__pyx_dict_cached_value.86__pyx_dict_version.85__pyx_dict_cached_value.84__pyx_n_s_finfo__pyx_dict_version.83__pyx_dict_cached_value.82__pyx_n_s_eps__pyx_dict_version.81__pyx_dict_cached_value.80__pyx_dict_version.79__pyx_dict_cached_value.78__pyx_dict_version.77__pyx_dict_cached_value.76__pyx_dict_version.75__pyx_dict_cached_value.74__pyx_n_s_isnan__pyx_dict_version.73__pyx_dict_cached_value.72__pyx_n_s_logical_or__pyx_n_s_reduce_2__pyx_kp_u_a_must_be_a_sequence_or_an_integ__pyx_n_s_cumsum__pyx_n_s_random__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_dict_version.67__pyx_dict_cached_value.66__pyx_dict_version.65__pyx_dict_cached_value.64__pyx_dict_version.43__pyx_dict_cached_value.42__pyx_dict_version.71__pyx_dict_cached_value.70__pyx_dict_version.69__pyx_dict_cached_value.68__pyx_dict_version.61__pyx_dict_cached_value.60__pyx_n_s_count_nonzero__pyx_dict_version.59__pyx_dict_cached_value.58__pyx_dict_version.57__pyx_dict_cached_value.56__pyx_dict_cached_value.54__pyx_dict_version.55__pyx_dict_version.53__pyx_dict_cached_value.52__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_dict_version.63__pyx_dict_cached_value.62__pyx_dict_version.41__pyx_dict_cached_value.40__pyx_dict_version.39__pyx_dict_cached_value.38__pyx_dict_version.51__pyx_dict_cached_value.50__pyx_dict_version.49__pyx_dict_cached_value.48__pyx_dict_version.47__pyx_dict_cached_value.46__pyx_n_s_full__pyx_dict_version.45__pyx_dict_cached_value.44__Pyx_TypeInfo_nn_uint64_t__pyx_pw_5numpy_6random_10_generator_9Generator_27choice__pyx_n_s_replace__pyx_pyargnames.96__pyx_pw_5numpy_6random_10_generator_9Generator_89multinomial__pyx_n_u_pvals__pyx_kp_u_1_2__pyx_dict_version.226__pyx_dict_cached_value.225__pyx_kp_u_sum_pvals__pyx_kp_u_None__pyx_kp_u_1_0__pyx_dict_version.224__pyx_dict_cached_value.223__pyx_dict_version.222__pyx_dict_cached_value.221__pyx_dict_version.220__pyx_dict_cached_value.219__pyx_dict_version.218__pyx_dict_cached_value.217__pyx_dict_version.216__pyx_dict_cached_value.215__pyx_dict_version.214__pyx_dict_cached_value.213__pyx_dict_version.212__pyx_dict_cached_value.211__pyx_kp_u_1__pyx_dict_version.210__pyx_dict_cached_value.209__pyx_dict_version.208__pyx_dict_cached_value.207__pyx_dict_version.206__pyx_dict_cached_value.205__pyx_n_s_pvals__pyx_pyargnames.227__pyx_n_s_sum__pyx_kp_u_astype_np_float64_1_0_The_pvals__pyx_kp_u_Output_size__pyx_kp_u_is_not_compatible_with_broadcas__pyx_kp_u__41__pyx_moduledef__pyx_k_1__pyx_k_1_0__pyx_k_1_2__pyx_k_A__pyx_k_ASCII__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type_s__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Construct_a_new_Generator_with_t__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Generator__pyx_k_Generator_binomial_line_2894__pyx_k_Generator_bytes_line_653__pyx_k_Generator_chisquare_line_1561__pyx_k_Generator_choice_line_682__pyx_k_Generator_dirichlet_line_4300__pyx_k_Generator_exponential_line_405__pyx_k_Generator_f_line_1395__pyx_k_Generator_gamma_line_1317__pyx_k_Generator_geometric_line_3323__pyx_k_Generator_gumbel_line_2346__pyx_k_Generator_hypergeometric_line_33__pyx_k_Generator_integers_line_526__pyx_k_Generator_laplace_line_2261__pyx_k_Generator_logistic_line_2465__pyx_k_Generator_lognormal_line_2545__pyx_k_Generator_logseries_line_3517__pyx_k_Generator_multinomial_line_3838__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1483__pyx_k_Generator_normal_line_1123__pyx_k_Generator_pareto_line_1963__pyx_k_Generator_permutation_line_4790__pyx_k_Generator_permuted_line_4498__pyx_k_Generator_poisson_line_3162__pyx_k_Generator_power_line_2160__pyx_k_Generator_random_line_299__pyx_k_Generator_rayleigh_line_2657__pyx_k_Generator_shuffle_line_4658__pyx_k_Generator_spawn_line_241__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_12__pyx_k_Generator_standard_normal_line_1__pyx_k_Generator_standard_t_line_1774__pyx_k_Generator_triangular_line_2794__pyx_k_Generator_uniform_line_945__pyx_k_Generator_vonmises_line_1880__pyx_k_Generator_wald_line_2726__pyx_k_Generator_weibull_line_2061__pyx_k_Generator_zipf_line_3235__pyx_k_ImportError__pyx_k_Incompatible_checksums_0x_x_vs_0__pyx_k_IndexError__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis_d_d__pyx_k_K__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_None__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_Output_size__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeWarning__pyx_k_Sequence__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_UserWarning__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__2__pyx_k__3__pyx_k__41__pyx_k__5__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_a_must_be_a_sequence_or_an_integ__pyx_k_add__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_array_is_read_only__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_astype_np_float64_1_0_The_pvals__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_collections_abc__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_copyto__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_symmetric_posi__pyx_k_cumsum__pyx_k_default_rng__pyx_k_default_rng_line_4863__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_exponential_scale_1_0_size_None__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_generator_ctor__pyx_k_generator_pyx__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_hasobject__pyx_k_high__pyx_k_high_low__pyx_k_high_low_range_exceeds_valid_bou__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_imatmul__pyx_k_imatmul__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_is_not_compatible_with_broadcas__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_less__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_low__pyx_k_main__pyx_k_marginals__pyx_n_s_matmul__pyx_k_matmul__pyx_k_max__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_and_cov_must_not_be_complex__pyx_k_mean_must_be_1_dimensional__pyx_k_memory_allocation_failed_in_perm__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_n_too_large_or_p_too_small_see_G__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_numpy__pyx_k_numpy_core_multiarray__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_linalg__pyx_k_numpy_random__generator__pyx_k_obj__pyx_k_object_which_is_not_a_subclass__pyx_k_operator__pyx_k_order__pyx_k_out__pyx_k_out_must_be_a_numpy_array__pyx_k_out_must_have_the_same_shape_as__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_permuted_x_axis_None_out_None_R__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pvals_must_have_at_least_1_dimen__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_getbuffer__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_n_s_rmatmul__pyx_k_rmatmul__pyx_k_rtol__pyx_k_safe__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_an_arra__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_spawn__pyx_k_spawn_n_children_Create_new_ind__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals__pyx_k_svd__pyx_k_swapaxes__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_k_unpack__pyx_k_update__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_writeable__pyx_k_x__pyx_k_you_are_shuffling_a__pyx_k_zeros__pyx_k_zig__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_getsets__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12spawn__pyx_doc_5numpy_6random_10_generator_9Generator_14random__pyx_doc_5numpy_6random_10_generator_9Generator_16beta__pyx_doc_5numpy_6random_10_generator_9Generator_18exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_22integers__pyx_doc_5numpy_6random_10_generator_9Generator_24bytes__pyx_doc_5numpy_6random_10_generator_9Generator_26choice__pyx_doc_5numpy_6random_10_generator_9Generator_28uniform__pyx_doc_5numpy_6random_10_generator_9Generator_30standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_32normal__pyx_doc_5numpy_6random_10_generator_9Generator_34standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36gamma__pyx_doc_5numpy_6random_10_generator_9Generator_38f__pyx_doc_5numpy_6random_10_generator_9Generator_40noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_42chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_48standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_50vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_52pareto__pyx_doc_5numpy_6random_10_generator_9Generator_54weibull__pyx_doc_5numpy_6random_10_generator_9Generator_56power__pyx_doc_5numpy_6random_10_generator_9Generator_58laplace__pyx_doc_5numpy_6random_10_generator_9Generator_60gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_62logistic__pyx_doc_5numpy_6random_10_generator_9Generator_64lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_66rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_68wald__pyx_doc_5numpy_6random_10_generator_9Generator_70triangular__pyx_doc_5numpy_6random_10_generator_9Generator_72binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_76poisson__pyx_doc_5numpy_6random_10_generator_9Generator_78zipf__pyx_doc_5numpy_6random_10_generator_9Generator_80geometric__pyx_doc_5numpy_6random_10_generator_9Generator_82hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_84logseries__pyx_doc_5numpy_6random_10_generator_9Generator_86multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_88multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_90multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_92dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_94permuted__pyx_doc_5numpy_6random_10_generator_9Generator_96shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_98permutation__pyx_doc_5numpy_6random_10_generator_default_rngderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatlogfact__FRAME_END____GNU_EH_FRAME_HDR_GLOBAL_OFFSET_TABLE___TMC_END____dso_handle_DYNAMICPyExc_ImportErrorPyInterpreterState_GetIDPyDict_SetItemStringexp@@GLIBC_2.2.5PyUnicode_ComparePyExc_StopIterationrandom_buffered_bounded_uint32PyFrame_New_PyUnicode_FastCopyCharactersrandom_weibullPyBool_TypePyModule_NewObjectrandom_positive_intPyInit__generatormemset@@GLIBC_2.2.5PyException_SetCause_PyObject_GenericGetAttrWithDict__pyx_module_is_main_numpy__random___generatorrandom_standard_gammaPyNumber_RemainderPyExc_ValueErrorPyType_ReadyPyUnicode_DecodeASCIIPyUnicode_FormatPyExc_AssertionErrorPyList_AsTuplePyLong_FromUnsignedLongPyMem_Freerandom_multivariate_hypergeometric_countPyExc_SystemErrorrandom_bounded_uint16_fill__gmon_start__log1p@@GLIBC_2.2.5PyGILState_Releaserandom_waldrandom_standard_normalrandom_geometric_searchPyCapsule_TypePyUnicode_FromString_finirandom_positive_int64PyErr_NoMemoryPyList_TypePyObject_GC_UnTrackrandom_rayleighrandom_uint_PyObject_GetDictPtrrandom_loggamPyObject_IsTruemalloc@@GLIBC_2.2.5random_standard_normal_fillPyExc_TypeErrorPyLong_FromSize_tPyMem_ReallocPyExc_Exceptionrandom_poissonPyObject_NotPyErr_GivenExceptionMatchesPyIndex_CheckPyThread_free_lockrandom_bounded_uint8_fillPyNumber_InPlaceMultiplyPyNumber_NegativePyOS_snprintfPyUnicode_AsUTF8AndSizePyObject_GetItemrandom_powerPyUnicode_FromFormatPyThread_allocate_lockPyNumber_Absolutelog1pf@@GLIBC_2.2.5_Py_FatalErrorFuncPyDict_NextPyImport_AddModulePyLong_AsLongPy_EnterRecursiveCallPyObject_CallFinalizerFromDeallocPyErr_Format_ITM_deregisterTMCloneTablePyFloat_FromDoublerandom_bounded_uint64_fillPyBaseObject_Typefmod@@GLIBC_2.2.5_PyList_ExtendPyNumber_InPlaceAddPyObject_GetAttrPyErr_ExceptionMatchesPyErr_OccurredPyNumber_InPlaceTrueDividerandom_gamma_frandom_exponentialfree@@GLIBC_2.2.5random_standard_cauchyPyType_ModifiedPyExc_BufferErrorstrlen@@GLIBC_2.2.5PyObject_GetBuffer_ITM_registerTMCloneTablerandom_standard_exponential_inv_fill_fPyCapsule_NewPyFloat_Typerandom_standard_exponentialPyNumber_FloorDividerandom_standard_exponential_inv_fillPyObject_GC_IsFinalized__cxa_finalize@@GLIBC_2.2.5PyExc_ZeroDivisionErrorPyExc_IndexError_Py_FalseStructPyErr_SetObjectPyNumber_MultiplyPyEval_RestoreThreadPyErr_WriteUnraisable__isnan@@GLIBC_2.2.5PyUnicode_InternFromStringrandom_standard_uniform_fPyUnicode_TypePyExc_DeprecationWarningrandom_logseriesPyObject_SizePyNumber_MatrixMultiplyPyUnicode_Concat_Py_TrueStructPyTuple_PackPyLong_FromStringPyEval_SaveThreadPyExc_UnboundLocalErrorPyThreadState_GetPyTuple_TypePyErr_SetExcInforandom_vonmisesPyDict_Sizerandom_multivariate_hypergeometric_marginalspow@@GLIBC_2.2.5PyModule_GetDictPyCode_NewEmptyPyErr_RestorePyImport_ImportModuleLevelObjectPyCapsule_GetNamePyObject_SetItemPyObject_GenericGetAttrPyLong_AsSsize_tPyObject_RichComparerandom_intervalPyObject_GetIterPyExc_RuntimeErrorPyType_IsSubtypePy_LeaveRecursiveCallPyBytes_Typerandom_buffered_bounded_uint8PyBytes_FromStringPyUnicode_Decoderandom_standard_normal_fill_frandom_bounded_uint32_fillPy_GetVersionPyNumber_Addrandom_binomial_btpePyGILState_EnsurePyDict_DelItemrandom_standard_uniformPyErr_WarnExrandom_geometricPyErr_NormalizeExceptionPyMethod_Type_PyInterpreterState_GetConfigPyObject_CallObjectrandom_negative_binomialrandom_lognormalrandom_chisquarePyObject_MallocPyErr_FetchPyModule_GetNameexpf@@GLIBC_2.2.5random_positive_int32PyFloat_AsDoublevsnprintf@@GLIBC_2.2.5PyObject_Formatrandom_bounded_bool_fillPyObject_HashPyNumber_SubtractPySlice_NewPyObject_GetAttrStringrandom_normalPyObject_IsInstancePyLong_Typerandom_uniformrandom_bounded_uint64random_logistic_Py_EllipsisObjectrandom_paretopowf@@GLIBC_2.2.5PyObject_SetAttrString_Py_NoneStructlogfactorialPyExc_OverflowErrorPyList_AppendPyObject_SetAttrrandom_zipfPyErr_SetNonerandom_triangularrandom_standard_uniform_fill_facos@@GLIBC_2.2.5PyBytes_FromStringAndSizePyDict_GetItemStringPySequence_Tuple_PyDict_GetItem_KnownHashPyExc_AttributeErrorrandom_standard_normal_frandom_standard_tPySlice_TypePyLong_FromLongrandom_standard_uniform_fillPyTraceBack_HerePyNumber_Orrandom_binomialPyExc_NameErrorrandom_gumbelmemcmp@@GLIBC_2.2.5PyException_SetTraceback_Py_DeallocPyObject_FreePyImport_ImportModulerandom_beta_PyLong_CopyPyErr_GetExcInforandom_standard_exponential_fillPyErr_ClearPyTuple_Newrandom_hypergeometricPyCFunction_TypePyCMethod_Newrandom_multinomialPyUnicode_NewPyImport_GetModuleDictrandom_laplacePyExc_NotImplementedErrorexpm1@@GLIBC_2.2.5random_standard_gamma_frandom_gammaPyObject_RichCompareBoolPyLong_FromSsize_tPyErr_WarnFormatPyErr_SetStringPySequence_ContainsPyNumber_TrueDividePyModuleDef_InitPyUnicode_FromStringAndSize_PyDict_NewPresizedPyCapsule_IsValidfloor@@GLIBC_2.2.5random_fPyBuffer_Releaserandom_buffered_bounded_bool_PyType_Lookup_PyUnicode_Readyrandom_noncentral_chisquarerandom_geometric_inversionrandom_buffered_bounded_uint16PyList_Newsqrt@@GLIBC_2.2.5PyMem_Mallocrandom_standard_exponential_fPyErr_PrintExPyUnicode_AsUTF8memcpy@@GLIBC_2.14PyCapsule_GetPointerPyObject_GC_Trackrandom_binomial_inversionPyNumber_Indexlog@@GLIBC_2.2.5PyDict_SetItemlogf@@GLIBC_2.2.5PySequence_ListPyLong_AsUnsignedLongrandom_standard_exponential_fill_f_initPyDict_Newsqrtf@@GLIBC_2.2.5random_noncentral_f.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``8 p@XXNHo334Uo55Pd0606}nB@@xxs ` ~`h=h= @@     <` ` Lx{ xk { k { k { k } m h p @@ @v n  @ 0 / PU hZ