o ?OgRn@sxdZddlmZddlZddlZddlZddlZddlZdgZej j Z ej j Z edejejBZGdddejZdS)z+Fraction, infinite-precision, real numbers.DecimalNFractionaC \A\s* # optional whitespace at the start, then (?P[-+]?) # an optional sign, then (?=\d|\.\d) # lookahead for digit or .digit (?P\d*) # numerator (possibly empty) (?: # followed by (?:/(?P\d+))? # an optional denominator | # or (?:\.(?P\d*))? # an optional fractional part (?:E(?P[-+]?\d+))? # and optional exponent ) \s*\Z # and optional whitespace to finish cseZdZdZdZdRddfdd Zed d Zed d Zd dZ dSddZ e ddZ e ddZ ddZddZddZddZeeej\ZZddZeeej\ZZd d!Zeeej\ZZd"d#Zeeej\Z Z!d$d%Z"ee"ej#\Z$Z%d&d'Z&ee&e'\Z(Z)d(d)Z*ee*ej+\Z,Z-d*d+Z.d,d-Z/d.d/Z0d0d1Z1d2d3Z2d4d5Z3d6d7Z4d8d9Z5dTd:d;Z6dd?Z8d@dAZ9dBdCZ:dDdEZ;dFdGZdLdMZ?dNdOZ@dPdQZAZBS)Ura]This class implements rational numbers. In the two-argument form of the constructor, Fraction(8, 6) will produce a rational number equivalent to 4/3. Both arguments must be Rational. The numerator defaults to 0 and the denominator defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. Fractions can also be constructed from: - numeric strings similar to those accepted by the float constructor (for example, '-2.3' or '1e10') - strings of the form '123/456' - float and Decimal instances - other Rational instances (including integers)  _numerator _denominatorrNT _normalizec stt||}|durt|tur||_d|_|St|tj r*|j |_|j |_|St|t t fr;|\|_|_|St|trt|}|durOtd|t|dpVd}|d}|rdt|}n8d}|d}|rdt|}||t|}||9}|d } | rt| } | d kr|d| 9}n|d| 9}|d d kr| }n3td t|turt|urnnnt|tj rt|tj r|j |j |j |j }}ntd|d krtd||rt||} |d kr| } || }|| }||_||_|S)aConstructs a Rational. Takes a string like '3/2' or '1.5', another Rational instance, a numerator/denominator pair, or a float. Examples -------- >>> Fraction(10, -8) Fraction(-5, 4) >>> Fraction(Fraction(1, 7), 5) Fraction(1, 35) >>> Fraction(Fraction(1, 7), Fraction(2, 3)) Fraction(3, 14) >>> Fraction('314') Fraction(314, 1) >>> Fraction('-35/4') Fraction(-35, 4) >>> Fraction('3.1415') # conversion from numeric string Fraction(6283, 2000) >>> Fraction('-47e-2') # string may include a decimal exponent Fraction(-47, 100) >>> Fraction(1.47) # direct construction from float (exact conversion) Fraction(6620291452234629, 4503599627370496) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(Decimal('1.47')) Fraction(147, 100) Nz Invalid literal for Fraction: %rZnum0denomdecimal exprZsign-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))superr__new__typeintrr isinstancenumbersRational numerator denominatorfloatras_integer_ratiostr_RATIONAL_FORMATmatch ValueErrorgrouplen TypeErrorZeroDivisionErrormathgcd) clsrrr selfmr r Zscalerg __class__0/opt/alt/python310/lib64/python3.10/fractions.pyr>sv                zFraction.__new__cCsDt|tjr ||St|tstd|j|t|jf||S)zConverts a finite float to a rational number, exactly. Beware that Fraction.from_float(0.3) != Fraction(3, 10). z.%s.from_float() only takes floats, not %r (%s))rrIntegralrr"__name__rr)r&fr,r,r- from_floats   zFraction.from_floatcCsVddlm}t|tjr|t|}nt||s%td|j|t|jf|| S)zAConverts a finite Decimal instance to a rational number, exactly.rrz2%s.from_decimal() only takes Decimals, not %r (%s)) r rrrr.rr"r/rr)r&Zdecrr,r,r- from_decimals    zFraction.from_decimalcCs |j|jfS)zReturn the integer ratio as a tuple. Return a tuple of two integers, whose ratio is equal to the Fraction and with a positive denominator. rr'r,r,r-rs zFraction.as_integer_ratio@Bc Cs|dkrtd|j|krt|Sd\}}}}|j|j}} ||}|||} | |kr.n|||||| f\}}}}||||}}q|||} t|| ||| |} t||} t| |t| |krl| S| S)aWClosest Fraction to self with denominator at most max_denominator. >>> Fraction('3.141592653589793').limit_denominator(10) Fraction(22, 7) >>> Fraction('3.141592653589793').limit_denominator(100) Fraction(311, 99) >>> Fraction(4321, 8765).limit_denominator(10000) Fraction(4321, 8765) r z$max_denominator should be at least 1)rr r r)rrrrabs) r'Zmax_denominatorZp0Zq0Zp1Zq1ndaZq2kZbound1Zbound2r,r,r-limit_denominators(      zFraction.limit_denominatorcC|jSN)rr8r,r,r-rzFraction.numeratorcCr;r<)rr=r,r,r-rr>zFraction.denominatorcCsd|jj|j|jfS)z repr(self)z %s(%s, %s))r+r/rrr3r,r,r-__repr__szFraction.__repr__cCs$|jdkr t|jSd|j|jfS)z str(self)r z%s/%s)rrrr3r,r,r-__str__ s  zFraction.__str__csTfdd}djd|_j|_fdd}djd|_j|_||fS)aGenerates forward and reverse operators given a purely-rational operator and a function from the operator module. Use this like: __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) In general, we want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. In Fraction, that means that we define __add__ and __radd__ as: def __add__(self, other): # Both types have numerators/denominator attributes, # so do the operation directly if isinstance(other, (int, Fraction)): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) # float and complex don't have those operations, but we # know about those types, so special case them. elif isinstance(other, float): return float(self) + other elif isinstance(other, complex): return complex(self) + other # Let the other type take over. return NotImplemented def __radd__(self, other): # radd handles more types than add because there's # nothing left to fall back to. if isinstance(other, numbers.Rational): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) elif isinstance(other, Real): return float(other) + float(self) elif isinstance(other, Complex): return complex(other) + complex(self) return NotImplemented There are 5 different cases for a mixed-type addition on Fraction. I'll refer to all of the above code that doesn't refer to Fraction, float, or complex as "boilerplate". 'r' will be an instance of Fraction, which is a subtype of Rational (r : Fraction <: Rational), and b : B <: Complex. The first three involve 'r + b': 1. If B <: Fraction, int, float, or complex, we handle that specially, and all is well. 2. If Fraction falls back to the boilerplate code, and it were to return a value from __add__, we'd miss the possibility that B defines a more intelligent __radd__, so the boilerplate should return NotImplemented from __add__. In particular, we don't handle Rational here, even though we could get an exact answer, in case the other type wants to do something special. 3. If B <: Fraction, Python tries B.__radd__ before Fraction.__add__. This is ok, because it was implemented with knowledge of Fraction, so it can handle those instances before delegating to Real or Complex. The next two situations describe 'b + r'. We assume that b didn't know about Fraction in its implementation, and that it uses similar boilerplate code: 4. If B <: Rational, then __radd_ converts both to the builtin rational type (hey look, that's us) and proceeds. 5. Otherwise, __radd__ tries to find the nearest common base ABC, and fall back to its builtin type. Since this class doesn't subclass a concrete type, there's no implementation to fall back to, so we need to try as hard as possible to return an actual value, or the user will get a TypeError. csLt|ttfr ||St|trt||St|tr$t||StSr<)rrrrcomplexNotImplementedr8bfallback_operatormonomorphic_operatorr,r-forwardds   z-Fraction._operator_fallbacks..forward__csVt|tjr ||St|tjrt|t|St|tjr)t|t|StSr<)rrrZRealrComplexrArBrDr8rEr,r-reverseps    z-Fraction._operator_fallbacks..reverseZ__r)r/__doc__)rGrFrHrLr,rEr-_operator_fallbackssP  zFraction._operator_fallbacksc Cs|j|j}}|j|j}}t||}|dkr't||||||ddS||}|||||}t||} | dkrHt|||ddSt|| ||| ddS)za + br Frrrr$r%r r8rDnadanbdbr)stg2r,r,r-_add  z Fraction._addc Cs|j|j}}|j|j}}t||}|dkr't||||||ddS||}|||||}t||} | dkrHt|||ddSt|| ||| ddS)za - br FrrOrPr,r,r-_subrYz Fraction._subcCsz|j|j}}|j|j}}t||}|dkr ||}||}t||}|dkr2||}||}t||||ddS)za * br FrrO)r8rDrQrRrSrTg1rWr,r,r-_muls  z Fraction._mulc Cs|j|j}}|j|j}}t||}|dkr ||}||}t||}|dkr2||}||}||||}} | dkrF| | }} t|| ddS)za / br rFrrO) r8rDrQrRrSrTr[rWr6r7r,r,r-_divs  z Fraction._divcCs|j|j|j|jS)za // brrrCr,r,r- _floordivszFraction._floordivcCs:|j|j}}t|j|||j\}}|t|||fS)z(a // b, a % b))rdivmodrr)r8rDrRrTZdivZn_modr,r,r-_divmod szFraction._divmodcCs,|j|j}}t|j||j|||S)za % b)rrr)r8rDrRrTr,r,r-_modsz Fraction._modcCst|tjrL|jdkrD|j}|dkrt|j||j|ddS|jdkr3t|j| |j| ddSt|j | |j | ddSt|t|St||S)za ** b If b is not an integer, the result will be a float or complex since roots are generally irrational. If b is an integer, the result will be rational. r rFr) rrrrrrrrr)r8rDZpowerr,r,r-__pow__s&        zFraction.__pow__cCs\|jdkr|jdkr||jSt|tjrt|j|j|S|jdkr(||jS|t|S)za ** br r) rrrrrrrrrrKr,r,r-__rpow__:s     zFraction.__rpow__cCst|j|jddS)z++a: Coerces a subclass instance to FractionFrrrrr=r,r,r-__pos__HszFraction.__pos__cCst|j |jddS)z-aFrrer=r,r,r-__neg__LszFraction.__neg__cCstt|j|jddS)zabs(a)Fr)rr5rrr=r,r,r-__abs__PszFraction.__abs__cCs&|jdkr |j |j S|j|jS)ztrunc(a)rrr=r,r,r- __trunc__Ts  zFraction.__trunc__cCs |j|jS)z math.floor(a)r^r=r,r,r- __floor__[s zFraction.__floor__cCs|j |j S)z math.ceil(a)r^r=r,r,r-__ceil___szFraction.__ceil__cCs|dur-t|j|j\}}|d|jkr|S|d|jkr!|dS|ddkr)|S|dSdt|}|dkr@tt|||Stt|||S)z?round(self, ndigits) Rounds half toward even. Nr rr)r`rrr5rround)r'ZndigitsZfloorZ remaindershiftr,r,r- __round__ds  zFraction.__round__cCsdz t|jdt}Wn tyt}Yn wttt|j|}|jdkr'|n| }|dkr0dS|S)z hash(self)r)powr_PyHASH_MODULUSr _PyHASH_INFhashr5r)r'ZdinvZhash_resultr,r,r-__hash__}s zFraction.__hash__cCst|tur|j|ko|jdkSt|tjr"|j|jko!|j|jkSt|tj r0|j dkr0|j }t|t rJt |s?t |rCd|kS|||kStS)za == br r)rrrrrrrrrrJimagrealrr$isnanisinfr1rBrCr,r,r-__eq__s     zFraction.__eq__cCsbt|tjr||j|j|j|jSt|tr/t |s"t |r'|d|S||| |St S)acHelper for comparison operators, for internal use only. Implement comparison between a Rational instance `self`, and either another Rational instance or a float `other`. If `other` is not a Rational instance or a float, return NotImplemented. `op` should be one of the six standard comparison operators. rx) rrrrrrrrr$r{r|r1rB)r'otheropr,r,r-_richcmps    zFraction._richcmpcC||tjS)za < b)roperatorltrCr,r,r-__lt__zFraction.__lt__cCr)za > b)rrgtrCr,r,r-__gt__rzFraction.__gt__cCr)za <= b)rrlerCr,r,r-__le__rzFraction.__le__cCr)za >= b)rrgerCr,r,r-__ge__rzFraction.__ge__cCs t|jS)za != 0)boolrr=r,r,r-__bool__s zFraction.__bool__cCs|jt|ffSr<)r+rr3r,r,r- __reduce__szFraction.__reduce__cC t|tkr|S||j|jSr<rrr+rrr3r,r,r-__copy__ zFraction.__copy__cCrr<r)r'Zmemor,r,r- __deepcopy__rzFraction.__deepcopy__)rN)r4r<)Cr/ __module__ __qualname__rM __slots__r classmethodr1r2rr:propertyrrr?r@rNrXradd__add____radd__rZsub__sub____rsub__r\mul__mul____rmul__r]truediv __truediv__ __rtruediv__r_floordiv __floordiv__ __rfloordiv__rar` __divmod__ __rdivmod__rbmod__mod____rmod__rcrdrfrgrhrirjrkrorwr}rrrrrrrrr __classcell__r,r,r*r-r&shi   7  0 !)rMr rr$rrresys__all__ hash_infomodulusrsinfrtcompileVERBOSE IGNORECASErrrr,r,r,r-s