ELF>Pv@@8 @PcPcppp  @@@HHhxx,-iyy888$$Ptd,,QtdRtdhxxGNU1i1Li-j[&G~xU,q "' g.LRyGrWA1cwZ :a~hN.jCP>@](8M )V;(Xt|1B&, U4eF"O<U ; __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit__decimalPyMem_MallocPyMem_ReallocPyMem_FreePyFloat_TypePyLong_TypePyBaseObject_TypePyType_ReadyPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectRefPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyModule_AddObjectPyUnicode_InternFromStringPyModule_AddStringConstantPyModule_AddIntConstant_Py_DeallocstrcmpPyExc_RuntimeErrorPyErr_Format_PyObject_New_Py_NoneStructPyArg_ParseTupleAndKeywordsPyLong_AsSsize_tPyUnicode_ComparePyErr_SetStringPyList_SizePyList_GetItemPyErr_OccurredPyExc_ValueErrorPyContextVar_GetPyType_IsSubtypePyList_NewPyErr_SetObjectPyList_AppendPyErr_NoMemoryPyContextVar_Set_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigitPyFloat_AsDoublePyComplex_FromDoublesPyFloat_FromStringPyUnicode_NewPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_TypePyDict_SizePyDict_GetItemWithErrorPyObject_IsTruePyExc_KeyError_Py_NotImplementedStructPyBool_FromLong_Py_FalseStructPyComplex_TypePyObject_IsInstancePyComplex_AsCComplexPyFloat_FromDoublePy_BuildValuePyUnicode_FromFormatPyObject_FreePyArg_ParseTuplePyErr_ClearPyLong_FromLongPyObject_GenericSetAttrPyExc_AttributeError_Py_HashPointerPyObject_CallFunctionObjArgsPyList_AsTuplePyTuple_SizePyLong_AsLongsnprintf_PyLong_FromDigitsPyExc_OverflowErrorPyUnicode_AsUTF8AndSizePyUnicode_DecodeUTF8PyObject_CallOneArgPyErr_ExceptionMatches_PyImport_GetModuleAttrStringPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharPyLong_FromUnsignedLong_PyLong_GCDPyDict_NewPyDict_SetItemPyLong_FromSize_tPyObject_HashNotImplementedPyType_GenericNewlibm.so.6stderrfprintffwritefputcabortraise__ctype_b_loc__errno_locationstrtolllocaleconvmemmove__ctype_tolower_locputsfreecallocreallocmallocmemsetmemcpyceillog10libpthread.so.0libc.so.6GLIBC_2.2.5GLIBC_2.3GLIBC_2.14/opt/alt/python312/lib64:/opt/alt/openssl11/lib64:/opt/alt/sqlite/usr/lib64 ui zp@ii ui z`ui zxx x x@xHxά`xݬhxpxxxx xx)x9xDx(yhyyؤyؤAA A0A@APA` ChA CAA)CAЀ)C؀A)CA)CA0)C8AP)CXAp)CxA/C CA)CȁA)C3CAAA A0A@APA`)ChA)CA)CA)CȂA)CA)CA )C(A@)CHA`)ChA)CACADȃEЃ9C@C CECJCOCXCEE@^CH@CP CXEC`JChOCpXCxEEbCkCtCЄ}C(F0@C0+C,@Cȅ4؅EBh /C(P8`d@CHPZX``ChZx_C e`\Cg[CȆg؆`[CpiZCjY C(px8@R@CHwXQ`ChpxxQD`u`SDC`h DȇD؇gDFg"DL`e )D(M8e@4DHOXd`KCh``x^;Da]FCb@]CDȈc؈\KDe \TD@h[ `D(m8V@iDHPnXV`sDhox@UDvSD k@WDȉpQ؉ dDiD0h D(8V@DHpXc`Dh`Ux`cDUcDpVbDȊW؊@bDWaD Xa D(X8 a@DH0YX``EhYx`` EzDp hEȋJ؋@fEJk&EJe 2E([8`_@7EH`]X^`FEhjx@ZSEy QaE0wRoEȌ0G، g}E0HfEpKe E(0\8 _@EH^X^`Eh0_x`^EpTEqTEȍs؍ TE0tSE@|l E(8l@EH)`Ehx F) lF} kFȎ؎`j/C C(8@@CHX`Ch@xC`C@Cȏ؏qCp`pC o D(P8 t@ DHpX`Dh xKCЦ;DFCȐ0ؐ`CDTD `D(08 ~@sDHX{`Dh SxD@D Dȑpؑ@D@D`` D(`8`@DHX`EhxDDЊ7FȒ0ؒ@D`@F@@ D(08`}@EHX`&Eh`x2E@7E @FEȓؓaEroE` }E(8@EH.X`EhxwEE`EȔؔ@E@yE`w E(8t@,FHX`JFhx@E`SFȕ`BE `F(@jFH`sFhp}F F*FȖPp-@fP3 P0(=0A80A@PBHP|* 2@b F(СHFPF<FȘ=@CPvX(JC0v8zPECXv`0zx CpvXOCvzșXCЙvؙ0{  F(`@+hwpiGFpGFFFGFFȚFКYGؚGGGFF F(F@ GHG`(Gh GBG:GFțFYGQGpGhG G(G@GHG`hGGGGGGȜGFXp`ȝ0I؝@X (p7GО=XGpZРWؠ{m(8h7x6 HpT8=@X{hPQ[Ȣآ BĴG˱ȣУGأܱGGG G(0˱8@H%PGX/`h?pܱxGGG( 0 8@HPX`#h$p(x):>BCHJVW_admuxyx%G0GpG8&- -5^S| |(|0|8|@|H|P| X| `| h|p|x||||||||||||| |!|"|'|*}+},}-}. }/(}00}18}2@}3H}4P}6X}7`}8h}9p};x}<}=}?}@}A}D}E}F}G}I}K}L}M}N}O}P}Q~R~T~U~X ~Y(~Z0~[8~\@~]H~`P~bX~c`~eh~fp~gx~h~i~j~k~l~n~o~p~q~r~s~t~v~w~x~y~z{|}~ HHHtH5 % @% h% h% h% h% h% h% h% hp% h`% h P% h @% h 0% h %z h %r h%j h%b h%Z h%R h%J h%B h%: h%2 h%* hp%" h`% hP% h@% h0% h % h% h% h% h % h!% h"% h#% h$% h%% h&% h'p% h(`% h)P% h*@% h+0% h, %z h-%r h.%j h/%b h0%Z h1%R h2%J h3%B h4%: h5%2 h6%* h7p%" h8`% h9P% h:@% h;0% h< % h=% h>% h?% h@% hA% hB% hC% hD% hE% hF% hGp% hH`% hIP% hJ@% hK0% hL %z hM%r hN%j hO%b hP%Z hQ%R hR%J hS%B hT%: hU%2 hV%* hWp%" hX`% hYP% hZ@% h[0% h\ %h]%h^%h_%h`%ha1E1E1E1H=.HtH.Hx HH[HtHuxHHuJMtI<$xHI<$<MtMEExIME-H=q.HtHa.H/x HH/H=.Ht H-LEx ILH=.HtHz.Hx HHH=g.Ht HW.L?Ex IL?H=+.Ht H.LEx ILH=-Ht H-LEx ILfMtIx HIE1HcSLLxcH[1I$x HI$tPE1E1!1ML$"L鰬1E11E1E11E1LE1E1L LHªE1L*E1GE1E1zH}LpLcYO E*;L1n'L3Ex IL3tAHUx HHUt>E1E1E11L#Ex IL#tE1E1E1HHuHHxHH8H+HgLE1x Lk雧1E1 H=LH5H81a1%I$x HI$t3E1eID$HI $xHI $uLE1:LE1*LH5?I8L H5II9L=H5;I?H\$ HھLT$ Ll$lL[Ll$ZIM$ExIM$uL.E1z1Ll$L-H5I};HLEILH1I$x HI$tE1LE1ArHaA>[A$ ILE1H=H5H?MUEIMULxu~H JH5CH9LFI4$HI4$LD$?D$HH1]E1PIt$8oIt$8eE1E1LHH8HH8MEEIMEL{LxnL|$ LLT$ uL-6H5/I}~4D*HI4$tE1^LE1NL%H5I<$E13/Ht$Ht$IM HH5]H87H H5/H9̫AZH#1Hiݬ_|H|$LEx ILt+H|$LEx ILtE1HV 2UM&Ex IM&H|$=H$H HH H1SIx HIt|A6LiL$$$L$Hu?L^D(LIXLE1龷,%ϹI<$x HI<$tKE1逹H|$LEx ILt=H|$LExILuJH鉸LE1-I$x HI$tE1ƹHwLE1s驹I$x HI$tE1HLйLE1<I$x HI$tE1xH)LE1[H|$H7HH7ѺI $кHI $ºLE1駺H|$ LEx ILt(H|$(LEILvklH|$ LEx ILt(H|$(LEIL1f'H|$ LEx ILtRH|$(LEILeI<$HI<$LE1;H|$LEx ILt(H|$LE5IL(}sH|$LEx ILt(H|$LEIL8鴾.E1DL+E0L)I $HI $LE1H|$H7HH7ǿI $HI $LE1mH|$H7oHH7bgFH|$ LEx ILtRH|$(LE>IL1)I<$HI<$ LE1H|$ LEx ILt(H|$(LE ILH|$ LEx ILtRH|$(LEILuI<$HI<$LE1KALHD$2HD$LHD$HD$H|$0L'Ex IL't~H|$8HHH1H|$0LEx ILtIH|$8H/x HH/t;M,$EIM,$L1pxxngL-FH5?I}T,L7lMEIML<LLL H5¼I9zpLH5I:M $EIM $LIbHIUL`HL|$,LLT$,-HH;uH,HUxHHUuH1L/LEx IL1 H$HHExHHEuH1WHI]L|HH5qH;IHH3VH1^HH :H1BH5BHMHHMH1 I $HI $LE1H|$H7HH7H|$(LEx ILtgH|$0LEx ILtXH|$8H/HH/hI<$HI<$LE1>k4-HL$8bHPH|$ Hx HHH|$(Hx HHtxH|$0H7^HH7QH|$ LE6IL)E1HHL$8xnsd끉HtmfqjHDtkd_VOI $%HI $LE1H|$H7HH7rI $tHI $fLE1HKH|$H7FHH79!$I $HI $LE1H|$H7HH7sH|$ LEx ILtRH|$(LEIL~;I<$hHI<$ZLE1h^I $HI $LE17H|$H7HH7H|$ LEx ILtRH|$(LEILKI<$xHI<$jLE1!H|$ LEx ILtRH|$(LE\ILOc I<$9HI<$+LE19/H|$ LEx ILtRH|$(LEILI<$HI<$LE1H|$ LEx ILtRH|$(LEILI<$HI<$LE1[dQH|$ LEx ILtRH|$(LEILOI<$|HI<$nLE1%H|$ LEx ILtRH|$(LE`ILSI<$=HI<$/LE1}sH|$H7HH7OI $HI $sLE1%XH|$ LEx ILt(H|$(LEXILKH|$H7HH7I $HI $LE1H|$H7=HH70hI $HI $ LE1>H|$ LEx ILtRH|$(LE ILI<$HI<$LE1A1RDJI $:HI $,LE1H|$H7 HH7g1SI,$xHI,$1LHD$1HD$MMEIMMLHD$HD$MUExIMUuLM$ExIM$uL1bL1SHt$Ht$IMIMHt$Ht$IM[EH|$H7HH7-I $HI $LE1H|$(H/x HH/t[H|$0L'Ex IL'tLLd$8H|$(LEx ILt3H|$0LEx ILt$H|$8r{tH|$ LEx ILt(H|$(LEIL9/H|$ LEx ILtRH|$(LE ILI<$HI<$LE1H|$ LEx ILtRH|$(LEIL~I<$HI<$LE1[TQH|$ LEx ILtRH|$(LEIL?I<$lHI<$^LE1막0H|$ LEx ILtRH|$(LEbILUI<$?HI<$1LE1oeH|$ LEx ILtRH|$(LE#IL*I<$HI<$LE1I $kHI $]LE1BH|$H7=HH70H|$ LEx ILtRH|$(LE3IL&jI<$HI<$LE1@6?E1YI $HI $LE1H|$H7HH7H|$H7YHH7L7I $6HI $(LE1 E1]A\A].H OH5 H91$HD$?HD$I$x HI$t*E1I$xHI$uLE1jLE1ZLttLUH-H5IH}*Iux HIutE1eLtE1HHT$]HT$E1L,H5}I8u1H H5`H9X1wpAI$x HI$t CE1L#I$x HI$t E15LE1HE1M]EIM]LLZLH5{I8L~zH]L]EIL]H5LH5 I8ZHtH=H5E1H?0H H5E1H9dPLE1ELH5E1I:Ht$WH~Ht$EH=HMH5~H:E1LH>L1H\$LeExILeM]EkIM]]LE1xHH5H8LILm HE1(HMMEIMMLjH]HH\$HFAJH17-HE1+HHH5E1H8!E1HE1HHL$(HRtGHL$(H|$LEx ILtEH|$ HHH<H(H5E1H8^e E1H6HHL$($H|$LEx ILt:H|$ HHHotHL$(H{H5<E1H8hgE1H@RH|$LEx ILtjH|$ HHHtHL$(HHL$(HH5E1H8tE1HHL$(6H.`tGHL$(H|$LEx ILtEH|$ HHHJH6H5E1H8l"E1HHL$(@H8tGHL$(%H|$LEx ILtEH|$ HHHHH5QE1H8|uE1)hH[HL$(JHBtGHL$(/H|$LEx ILtEH|$ HHHHH5E1H8  H|$LEx ILtUH|$ Hx HHE1H|$HxHHuyE1HiHL$(ZHt-HL$(M$ExIM$uLE1H H5̠E1H8Ag]E1HHL$(H|$LEx ILt`H|$ HHHsWtHL$(HHbH5#E1H8:NH$HH3H$51E1H HL$(TH|$LEx ILt`H|$ HHHv?tHL$(nHfHH5OE1H8zsE1 HcHL$(T^ H|$LEx ILt`H|$ H HH I tHL$(xHpHH5E1H8 tLHL$( H|$LExILuH|$ Hx HHtdE1s < HnH5/E1H8K H|$HxHHuEE1) H5HL$(T & HB E1 HHL$( O H|$LEx ILt`H|$ H| HHo ? ~tHL$(i Ha HH5JE1H8 unE1 ak H|$LEx ILt9H|$ H HH $[ HHL$( Hw t HL$(d HH5E1H8 E1 HHL$( c H|$LEx ILt`H|$ H HH lS 2tHL$(} Hu H=H5E1H8s )1 HHD$HD$ HE11fE1E1E1E1NH1H1]HHt$Ht$L H5I9I7HI7LgHHILUnHHD$AHl$ZBLHExHHEE1uMME1OE1_HLmExILmuHE1ME1E1|L&MHPHBMuExPIMutTLUEZILULHE1UIM]L:LUEyLLUEyH}x HH}t E1[HMLmExE1ME1(t0H $H|$Hx HHtwE1xHwH58E1H8pH|$LEx ILtFH|$LExILu7:H*H $ E1Hw tmH $H|$LEx ILH|$LEx ILtRE1H|$HxHHu衿E1蔿HH5AE1H8趿lH_H $H Ikt$HL$(BH)HL$(0H(HH5ɗH8A1HD$HD$D]H0t10HH|$LEIL覾1]H1]HHt$腾Ht$H1]HHt$fHt$I$x HI$tE1HLE1+[PP1H`H5H H8t&E$ID@LEHxH H<LLPHPH=F1$t$P$t$X$t$`$t$h$t$p$t$x$L$L$HL$xH$Ht$pHpIH8HD1H5H;H H=lDBH3 [餽H=H1H5H;蠾H H=dH3 Z111ÿ颻(HXLIH"H LFHGIc HGKHW HO(M9vILW%QHFH7@HHHH@HN+(HXLIH"H HGHGKHW HO((HXLIH"H HGHGKHW HO(ÍVwZ@uTAINI!HHGHwHLO HLW(H)HG1ËGËGËG,1ww, w#wt w %Hc AI?LUI9H$Hwj:HEIEHIEHA$ Mt$SȹH9t0I#NJL9@D݃0MوLIL)q.LIL-p v-t>E11AAAAAAAAAAAAAALl$`HD$CH$H޹ HHƄ$>fDŽ$ H\$Hǁ XL1Hl$LM416LL$LA Ld$A $H\$D A[L[]A\A]A^A_MhAZL[HL]A\A]A^A_AUATIUHSHH8ILHLLHdAtHھHg#H8[]A\A]H1҅IH|$LƃHD$HAVAUIպATIUHH8IL u A $1LLLHIH8]A\A]A^AWAVIAUL-]ATUSHT$ HtIfA[I^nE1I߸DD$ t)KL1HcLHx轷x,9}(Hc)IIIuI9tI_HCf]D)H[]A\A]A^A_AWL=AVAAUE1ATAUHSHQEs*K 1IcHH9x+D9}&HcA)HIIuHH9tEHE)Z[]A\A]A^A_ATIUHH|$}Hl$HtLHH51HLH=jkH]A\UHHH|$Hl$HtH蕵H, H{H= H H]1ID$(LE1ID$(LE1Lk(L9c H"oHdfHC1CMfHl1E11ATUHQH=]IHu HLZ]A\AUHATI1HUHSQLo(Ht/Lm(HnH_dWHE1EA $+HHǾHE(HtH] H^Z[]A\A]1HHHHuIUHHSHQHu1*HM Hu(HH HE(HH] Z[]1UHSH1HQHHuH{(OHtHC(Hk 1H9k Z[] tH9,LuLU(LLLaHO\HE* Au2ֲH_Hw(H|t-A|$$w?El$$LfKcLA D]A|$(HGup(Mzu1YM@uILHH|$fML$IM+ $Ld$ML$7HI+$HG낺HT$HLbD$@H|$@rHT$HjLM(EMfLE Ml$L9-LHM5vL9tE t1L9L](OLIDULmAE DUI9HT$HuPH|$h!D$@HD$ILt$@HT$HMMfD$ILt$@HT$HMHT$HGLM(EHT$H]cHHFLl$HLLeL9uH\$@LLHEtzILL$MLLHD$A $YH|$@D D$LHDƁA 4$t$ Z`#%A $LH7`H|$H|$8D$H|$hD$@HT$LHLD$(HL$LL$)H}(LT$EHL$LD$(J4Ld$0HT$HLT$LT$fo5Ld$0I9M9E1WH|$0LD$fLLL$HD$`0L$L|$`LL$hT$xLEueD$`u\H$LD$x1J|uHL$xD$`HL$uHL$L\HL$L}I91H4D$`uH$D$`xLjH$HE1@E18E10HT$ HDT$Et6LLH Dt$u#HLH[]A\A]A^A_]莭LLHDt$ t$H1[H1]A\A]A^A_[H|$XAD$0E$HT$HL\$ LT$(HL$(L\$ #MVHT$HLD$ L\$EHM(L\$LD$ L|$A#LD$LLHLJA $#E{#I\$LEI|$(L\$ pH|$0uHT$LL\$ L\$ 5$HT$LLLD$(L\$ A4$I|$(L\$ LD$(KHT$HL\$ LT$(HL$(L\$ HH|$($HѫHLHL$(L\$ VH|$LRO$D$AtL$H$L$M|M9$H$rrI1MLLL %xLOL; L; 2L; KUILMHLLHD$P Ht$PuHt$PLE1Ht$PHyH$wL;  TTL; T訝A D$@ctA _Hl$Ld$HAH|$H$@Iمj$I\$~jH|$H$@$H$fHl$Ld$HAH|$H$@IH|$H$@j$H$fH$$cmH|$CmH|$KmH$|$mI\$H$HH9OHHM5DH9t$ t*H9kH$HlZcH$pizH|$H$@uH$$p+zH|$HH|$H$@{Hl$Ld$HAL$L$H$@H5H|$KtHt$ H$dH|$H$@L$H$oXL; -WRH$@VyH$h $@3yH$$H$H|$cHl$Ld$HAQ1ɺ1L I5kLKM1LLLPKtHT$`LJIkL; prEL; wsML; fpQIL$11LHII+ $HLd$`A $ApjL; 4Q *QL; _QHT$H4$MH4$HT$HItZH\$LHIKD$uILLHHAuI~(Au'L}D$xLHI}xD$px1L$LHL-tdLHL$@MLHLHT$@LLHt$0 LLLhA $@H?LJLH5I5H$"H$$LH$v$H|$^H$K${H|$3[H$ D$`;H|$ HھLfHH$#H$($H5I9w I(H$0Ƅ$0T$0IG(L sMO }H$d$|H$IqALDE"H$$LHpGyLl$ LNLUHC1D$DL$AII9HLcHK AILHI9|HL$LuLLT$ LMH4$HILL$ $KuMLH$LLLLLMLLHIL'HMLLHH4$HEu T$ [$uH$$uH$LLHH\$PL%LLHYtPIt$I|$(nvLLHLH+EfvLHERvEIvIzuH|$h1D$@UHOHEHHM HpH9HLH9t E tH9+Hu(HHEILH^tHELHyX]A\H; H;H;L$LHLYtLoH$OLHDLHHMEHT$0LHHt$ H$$HD$-H|$xD$PH<$H$$H|$H$$LlA@H?HOL; EAL; EA$ tTL9LHE tnH97LHLD$LD$H([]A\A]A^A_LHQSH|$AJ1IHw/AuILHLD$LD$H%HT$ H!HT$ H H= t5H9XLHHE t&H9LHLHLH|bX[]A\A]A^A_H;5EA 8E tcH9LHLD$fLD$H([]A\A]A^A_LL$O4L1IHw)uO4ItLHLD$LD$H;5EAH;5EA t"L9oLH_H,LHxFL; DɃL; CɃAE tQH9LLL$bL$H[]A\A]A^A_À t.L97LL.'LLL$L$LLLLH&%LLH8'AM@'HLH[]A\A]H(1(H>H HH U&*H?H9u H@ *MH)AM6/AMI&/H$g$~.H$L[.H$9$8.H$.H$8 $:.H|$.H$(+H|$L>?$-H$$-LL$LL$8LLH5oD$,MIHD$ LHl$0Hl$8MHLLLg/HT$MHLLHl$ l$,tQD$ tMHLHH*/HT$MHHHH|$1$,ILI H$ LL$0L~$H$8IfHnfInHl$0~$(D$flflH$D$$$!+[LH]A\A]A^=[L]A\A]A^AM -LLHLLD$@BHT$pHHL[]A\A]LH>=3.Hؾ1HLHH1I41I|$LM\$ HwL9ILL9t A$ tL92It$(HID$rLLsI|$LLH;҃0/H;]҃ /H;<҃ /H|$I9>0LHT</H;@҃.L|$PLLLt M.躋LL </H|$PM/H|$xzD$P0/LgB/I#NJHHx>L9tD$j.LH;.H$$.D$2.H|$ 1H|$xD$P1H|$PӾ1H$$1LL;1H|$HD$ 1H${1HI<u%HHu؃HHD$rr1LHL$3Hl$HHH 4LLt:4 T$LLA ut$ P:4H|$н4H|$8D$4A E AEf4H$781Ly7HL$HT$8LL8]7t$lHT$L9J7t$lHT$L9.7Hkt$0LH|$$5H$C7H$ټ$6t$lHT$L%96L6H$$6H$y$6LH87L9HLMO HM59L9tA L9I(HD$HLLT$NBLT$sHLt$vL9LIV HM5һH9tA H9I~(Ht$HLD$LD$N,L HH-Ld$LMMIKuHT$ LLT$HD$LT$L\$)HH[]A\A]A^A_HT$ LLT$HD$L\$LT$HT$ LLD$LD$?HT$ LLD$LD$L9׺LMO HM5ȺL9t)A HT$ LLT$?LT$PI(L\$HLLT$N,ALT$HHLMMIMl$L9-PLIN HM5AH9A MH9tHT$HT$ LHT$MtHT$ HHL[]A\A]A^A_S6I\tHT$ L^;wI9{wHT$ LLpfwL9HT$ LLT$PLT$Lt$LsM tHT$HT$ LHT$EK;tzyzyMNIyxxI#NJE1L9ALML)HH5H9w 5H(HL$D$|$HC(uHĸHC L5D5 u H5H9w BfC5 t`H95HT$ H>5I|5H5H(HL$ D$ |$ HC(uH 2HK HT$ H5 LLD$$(6LE6H|$XD$0(6D$IAHHL$LHH|$0cHH\$HH}HL$/LL$D$/C|$/HEH<$HDH\$I#NJMHHUHL$BLt$H&H4H LkH1HH:{M]}D$HT$H|$0LhLD$IA||$tH}HEHl$IM~H|$XD$0~HL$LH|$0LHaHtD$E1zD$Im}t~H|$0'\|Hl$IMG|D$6}E18zHH9E1#zLHC2G5H|$õ5H|$hD$@5L¾ 2L¾1H9HMI9tE t,I9a6LH|$(H|$6HM>6LH|$H|$fHnfHnHflG;6ZSHiU1HCH5H;脃H )H=pۅH3 >ـSHn1HH5:H;*H )H=F聅H3 I9K4 E1HJDIL9wHT$HLIMH|$LHL\$ d6LT$HL$ IHLLT$HL$ALD$HD$1LT$IHDHL9rJLLLHMILT$HD$5HT$H|$HHX[J2]A\A]A^A_ӫH1HH9vHDHHt$H|$MIHLLHL\$ 5HL$ LT$'HL978L<6.8 7Ht$HHH9uH|$LHL/LL$ HԲLE1ȲL8LHHtH\$Ht$HHHh1LHLz/Ht$HH@LDL1H+T$LD$@L>LE12;8L$-8AIM9v.AI M9v'E18L<6HM6M6Ht$HHLL$蝀L\$E1M9tHD$JILLH.Ht }\7rAWMMAVHIAUIATIUSHhI9wpIwHLLۦLD$XLLLLLT$&5Hl$HLHLH HܰIXHH\$HHI)HT$LL9M9viO 1IHDHI9wLT$JLMMLLHH|$t!I?H|$HL茨HL$1H<1,K4E1HL9vJDIHLLT$MMLLHDHH9wHLMILLHltJ;HLHLLT$HI)H L\$@LHHD˧LILCL ILLD$8NT H L|$LL\$0L<LLT$(O|=JDHt$ iHD$0HLLD$8HT$(HLMHD$HL\$@1H<HH9vHDHLL$HT$ ILHLHHD$(JpHT$Ht$(H|$HHLHT$ͦHT$HLͨLD$LL$E1IIJDIM9wLD$JLIILLHHT$HLaHT$HLaHh[]A\A]A^A_H;=HsnH;=s+H;=ѶsH;=ɃH;=ɃH;=ƶsH;=ɃH;= H;=ɃvH;=̶s3H;=sH;=Ƀ VH;=sHH;=Ƀ :H;=s%H;=sH;=ɃH;=Ƀ H;=ɃH51HcH4ù H1HHHHHHHHG(HWH|ÉHG(Hø ÊÊÊ Ê@ÊATIUAPH95`HG HM5THH9u IT$(1 tH9}Y]A\ûuH9t HHZ]A\ uISHHH5H9w ~.H(HL$D$|$HC(u HūHC H[ATUHH95HG HM5D$ H9uA:H tH9~HT$ <A HT$ AEuʋt$ H HD]A\AUATIUHH953HG HM5'D$ HH9u IT$(12I tH9~HT$ t)0HT$ zuH9tHHt$ Lv1H]A\A]AWI1WAVAUIATE1UHSHHXMIL$$H<$1H#NJLl$L|$D$8LD$8H<$L1IIAH#NJk91LLH#NJHD$ O91LLH#NJHD$(I08HD$0Hu IMIL9=ܩLHE HM5ͩH9uHu(11E tH9~HT$Hp HT$H1Au$HL H HL9uH}HH]覹E1HXD[]A\A]A^A_ÊÊ ЈÊÀ'ÀÊ Ê@ÊȀÊ ЈHW1H9~*HG(HHtLk 1HHu IHE1Lu16HH HH1 SHHHHT$ D$ T$ s AAH9v AHD[SHHHt$ D$ ;T$ s HH9v H[øH9txUHSHQH5çHG H9uHMuH9u8U H{( ш ECHuHsHMHu(H t H9~豿 uZ[]AUATIUHSHH8IL褒11LH!HLHǸAtHھH##H8[]A\A]AUI1ATIԉ1UHE!LLH]A\A]rATIH#NJUHP1LG('H9HGHI@HHH)I0HG躶YLH]A\막&Hc&AUATIUHSHH8IL誑HLLHy$AtHھH"#H8[]A\A]K$HcC$AWIAVIAUMATUHt*LL'LLH]A\A]A^A_HIHx!H9RLgLH]A\A]A^A_HH9.Lst;LHLH]HA\A]A^A_LH]A\A]A^A_!]A\A]A^A_ATMUHHLD$ D$ D$ A $AtLHl!H]A\AWWAVAUIATIUSHhHNH~ H^HT$H$`HV(IJL$`D$Hv(H $L|$@LL$8HT$ H$H$H$LH$H$Hl$pL$(H$$$$H$Ƅ$0Ƅ$0HD$8Ƅ$0(L$(L$XL5OƄ$PI$8L$HDŽ$`L$h$HL\$pL;ǬsnL;s+L;}sL;lL;kL;rsL;aL;h L;NrL;xs3L;WsL;F RL;PsDL;: 6L;\s!L;CsL;2M9 L;:H I} )HcLH=HM5L\$pH9t$AE tH9~LL- LLHL$pI}(L$`LyIu(AeLIEH~MIMEILAkHcLT$1(%(-D$dIXLIIL$DŽ$HD$Hd$H)l$pH2E]AIT$AHD$ H$I)ED AU%LXHcLI<ލKHHIHI!މl$HL|$p|$xMLLLL$H$LBLH$H$MII9LD$@}6L)LHPLHt$@MLLT$@HLT$(LH$HLL$@MLLL$(LHL$H1Ht$(LH1MLLH$0L MLLH$L%L$ $uH$>$uH$&$uH$($uH$Ht$LL膱Hh[]A\A]A^A_AWWAAVAUIATIUSHHHV(((-]H $H$V^LD$@(%*PH$H$$LL$HH$HH$D$<Ƅ$0H$Ƅ$ 0HD$@Ƅ$P$$$$$($8$X$hL$xHF(5Ƅ$HL$H$H$IHD$HHD$H9u&HpHHuH$LQL]HuH|$XL@Ht$Pt2AHL)IHMMNDRA~3LAAHM)IMNLuDA D)H=LD$PHLLD$PID$H+EAHLT$PA'IHD$N9MILII9rIIM9r INM~AE uDH5\I9u ~7I}(H$Ƅ$$IE(u H=#I} ʚ;1ME(AeILIIEIE)H$LH|$`BHE1DŽ$HH~@L$LPMcLK4E\$MHHHIHt$H\$H8IIII HLAtL¾L LLLοD$$>H8H8IIII HLAtL¾LM LLLοD$$P>H8AVIAUIATIUHH8@6@tJLAtLH ME11HIHI+M A $fIVIF(H|u@0A $>@uH LHLHLD$$H$%LLH苠H8]A\A]A^AWWAVAUATUSLHh( ќHD$`D$00HD$XD$8L$HuIHIAH_u II}D$uDDeWIHu HdIEH^D$Eu%HUHM(H|uMUAfA7HUH|$0Hx1HH諶Ht$/LD$HM1Ht$L|$XHHH9HuHL$I}LLD$D$/M|$/IELD$MLLLLL\$LD$dI}LD$L\$foOLI~MtLLeL9r{IMuIt&D$0u H|$XD$0u2H|$0%|$tI}IE IHhL[]A\A]A^A_AWAVH5IAUATUSH8L$Ld$pLL$ H9v LkHDIH*HT$ZH*^,Yf/(wHL,MxI9tHIE1HHuLH8L[]A\A]A^A_pI9tG\UN\IL9=܋LI~ HM5͋H9uHMN(AHtI1iA tH9~LLc LL&uI~(HL$LHHD$Hu-HTI~(L;HD$HHHuMEM9|`L9*LM^ HM5L9tBA tML9~7LLLD$(LD$(LLLD$(yLD$(MIF(HT$JMUIMM9|`H9 HI~ HM5H9tBA tIH9~7LLHL$(BHL$(LLHL$(HL$(IIv(LL$N IItgAIFLMn \$AOH5MV I9vIMvL9tA tL9~L賘LyHt$ LLyH8H[]A\A]A^A_%‰AVAUATIUHHFLnLvHNthr<H<@H\MM 1LLH<M I u1<wgDLLIINgmAD L9ILʈL9IOx?HT$ H5HD$ RD$ Au1(LHLHH]A\A]A^ATIUSHHPD$tH~u+HNHV(H|H1HsH{HT$LC LK(@HD$(Ht$0H5 \H|$8H|$ LD$@LL$HD$ LT$8ItIt 11It-\L\$HIC1H#NJHL$H1HHqHHH#NJH1HHHHL$HH1HHHD$HQ[SHD$1:WAD$A$ID$AD$EHD$1 HD$11ɃuHKfHnA,$AD$L$IL$AL$HPL[]A\JIL9]E]]1H)ItLE1eE1:nicH|$xArvsAmsL\$HLL$LT$hH$K4Ht$xJIO1HH|$HusH9wH)H1IIIHT$HM9LH$@L)HI)LIXH9$H)II)-H)MH)H)IA IDDHT$8E1ۃL$E|$`HMщL$lM9t-AJtLKtH֋L$hHLMILLHD$xLT$p EDE1AHEDT$`LT$pD$lHD$xM9tyALHxHHLJL JLHH)H)DHLLI븃|$`EZ:A9|$lIBLfCL8EEE1DAAM9AIH{HHHItH)HtLH)DHMLI봃|$`u+EN2@0|$l=B| fB|,DDBL BL A BtCt}Eu%EtA:@;EzALfLjAAttWSHNn1HH5GH;7AH )H=SCH3 ?>1mH|$pMHHHL$@LHƃ?HLHL$@LH5{H1HHt$H LHd$IHֺL;HLHkII)LHHD$M9uH HHHHLHLL?H5,{HHHt$H LHd$IHHT$pLHD$pHt$HLII)H$IHHM9rHHHL$@LHƃ?HLHL$@LH5zHHHt$H LHd$IHHT$pLHD$pHt$HLII)H$IHHM9tYI1H9t&MII)M9tNINIHIMtL)d$jIL)HtLH)L9qiM)LMI)L9!L)fHn$I9L)M9wM)HIII1HT$HM9LHT$L)HL0I1HHtI;HŹH@t5@B>HŹ/H fuչ?HŹHL)HLL)M9M)HL?H)H9L)HI H)H9L)MH4I)L9HH62HHt܃H/H fu?fH9jATH9>IH%DH=o1=ID$@HDH=o1=ID$HHCH^oHoBM\$@It$,AD$oJ AL$ oR0IT$(AT$0ISHpAD$PID$XLA\10IHyCH=n1=ID$@HeCH=n1I|$H MD$@ML$(MT$,MHLPAD$PID$XdI|$H5 f.HG1DAWAVAUATUSHxHHHD$hH|$HHH\$0H\$8H\$@H\$HH\$PH\$XH\$`H\$hP1HT$hRHs HL$hQH KHl$hULD$hAPLL$hAQLL$hLD$`8H0 H|$PHt$XLT$HLl$hLd$`L|$@H|$ H|$0Hl$8Ht$LT$H9:HH L\$MsLW H9HEH5lH9MH;-l\H;-lnH;-llH;-ljH;-lH;-lH;-lH_;AÅH5ElHE;H56lH.;H5'lH;tqH5lH;AL kK4HDt$,:D\$,L kIIuLEH5I87Hl$ALuDLuV@I9qLl8HHLVH|$H9s<8HHLV(H|$ H9q 8H}HL|$LD$AGPI9L7HHsAHL9|LmVvI9IuzL9HD$H[E11L5`HL:I>{H;`H=``H;`H=`EH9`yH=`*H9`H=`H;`H=`H9`H=`H5`fH H>H;Fu@F=A HH;l$AL\$DMkLWTZ>I9GID$L,8HHH1E1LLP9I>@H;W_H=Q_%H;\_H=V_ H9a_+H=[_H;f_ H=`_H;k_5H=e_H9p_H=j_H ]_H H9H;Au@AI I9H|$HS(=1Hx[]A\A]A^A_fDH !^H5^4@H !^|@H5^@H5!^@H ^L@H !^<@H5^@H5!^@H ^ H9I9t+L&4HHL\$I{R?HD$H9t+H3HHLt$I~vRHl$ H9t$H3H-H1HT$BPHL$H9tFH3HH(ALD$AIM9Mp'LR!I9tCMUA(LA5HD$HLl$Mu1L Q#;I9I\$LLL53\4HHLd$Ml$1LQ:H5\@H \dHT$ALrAE1HL$ALqAAHD$LpAAAHUHH5dH9H;-dtH;-dNH;-d3H;-dzH;-dH;-dH;-dH3AÅ:AAA2Hu,HGLL$E1Mqz2HHYHLT$AMrHt$ALv}H|$ALwi$2HuLt$HI~NH-=H5H}/dH|$L7O1H:L`=H5I:/l1HH|$HLwH==H5aH?Y/$H|$L L5<H5I>!/OL%<H5~I<$.DAW1H @AVAUATIHHUHSHXH<LL$LD$HD$H\$-FLl$I9/H=b1HT$ l/7Ll$ MIMLl$7HIM7Hl$H3H}L=N^L9ML1=H}HLt$ D$ LLM9L0IHD7fo hf@0HHHH@M|$P X0HUHH@HЃH1H@ƉH}H\$ ID$0I|$HLpLID$ LpHLLqT$ AH6ցt$ E}(A u,DHXL[]A\A]A^A_f.HIHkLLHLI+HHuHMHl$A@LUXZT$ AM5fDI}H5ZH9/5H9H5E1H8,%H;=~9}L LLH%IDD$ M9uRL9euLDeA5DeIID$HL1ID$0_nLID$ nL IH4HuHxHT$ #t$ L C4L1A$0IHf@0LPHLxfo YeH@@ H0HULP@IAI51I@ƉH*ULID$0IT$HmLID$ mHT$ LLoH57-oHuH=81HVH?H5D'.E1SL7HHI0<HHtH=L IEx IL MtLLL+LI )A!LSb3I8l3ExMpMtc14(HHtTL-R E}uWI I}uH-S D}u[H H}uHL=)L Ex IL 3M$E22IuHj*y2I PHuHL*y2H(LD$ 6IHl2Hl$ HG1I|$HHL$ t$ L]2[HD$IHCH#2HH;11HH=m\1HT$I)>2HD$HtHff.AWAAVAUATAUSHH(G AAA >2@HoLw(H}+IH"2EH LeAB|#(B|#(H $5<9{({(7<9udDLM<.L@LD+DA_u/EuA~H@}LeL9uA$H(L[]A\A]A^A_Ht^A~ H48tIHt1AA<6L%P4AzLH3A;xLD$'LD$tMI\$AtA/A<^LADLD$T$h'LD$T$DLD$T$'T$LD$u0HEHL9ILw8HkH})IHJ ]uRH H}uH-K ]uWH H}uLL I$xHI$-Z[]A\A]HuL!y,H WHuL!y,fAT1USHHH=dTHl$H?!-Ld$MI$HI$-AT$PHsHLHH,HHl$ $IH%@ H٨ ,@,It$(Hs:THtDMDRH|$xRHL[]A\@L\L\HHrHHMHSHHH9sHHtlHtYHtFHt3Ht Ht HEHFLD=L>HLL=L >HLT=L>HL\=L>HHT=H>HHL=H >HH9 HD=H>LD=LD>LL=LL>LT=LT>L\= L\> HT=(HT>(HL=0HL>0HD=8HD>8H@H9뢋}>DDDDDTfDTIHHxHI$+AT$PHsHJHH*HHl$"IHt$@ H٨ *@*It$(HHH|$Pff.@ATISHLQ!Ht%P m*@m*HH(HHLZ[A\f.UHHiHEH]H@fAWAVAUATUSHHHFD$ *Lt$IHHL3;H MI9ILIHZ*f@0HpHLhfoWH@P X0HSHp@IAI1I@ƉHwD[H@0LL|$ LXH/_LID$ ^_LLL`T$ Ar)M(% E,ωD$ $HHL[]A\A]A^A_PHHsMA@LLT$ARLZYT$ At)ID$HL1ID$0}^LID$ ^L1A$0IHpf@0HHHLhfo UH@@ H0HSHH@H׃Hx1H@ƉH.DCLID$0MD$H]LID$ ^HT$ LLp_!H-DAπM(H}&(D}LuMtc11IHtTHC D{uVH H;uH-D D}u[H H}uLL;I]xHI]'I4$''HsLhy7'H PHuLJy''ff.ATIUHHHFt&H5H'tCH5HtHHL]A\^fDID$HtH]A\fID$@ufHtH&H=LHPH&H5H:;1ZSHHHHH&H{7t1H[H&H5H8SHH$tH{t7A1E&[@AUATUSQHGH5ALHH9.H;=6L H;=1LH;=,LH;='LH;="LH;=LH9=LAąH5KHH5KHH5KHtbH5KHtgL-jKItHAjt$HHuHM%H5VAH:ZD[]A\A]AAAAE1AAAf.UHH@HtHxHHuH}HHtHxHHuHMH]H@ff.@HtHxHHuvDAVAAUL-FATUHSHHHzL9u'DEAtDEH+AHD[]A\A]A^LHL$AąuHEHL$tHHLE1 HHAEtH=#HP1H5H?H#2$HE1mAWAVI1AUATUHSHhH=ILl$0D$(L$Ld$0MI$(HI$$I~H EH9A6QH"A6I9}$}L}MnLkL$kHT$(LLD$kLEE_ILEMEeIMH=wLMcMAAAHcHh[]A\A]A^A_ÃAACIHgHxHI$#I~HDH9H5wDI~LLLH=LDIMH!I9WILmDUAtDULInLl$jH$jH|$HT$(HD$jMEx IMIxHIuLD$CD$=tML%pIcL@@DL$D $tt$(Lt1eD{Aw߃H D(A>D"H5V H9u1DCAAL$,LLH=B I+uI~H5T H9H5ELwOH5LLIH.LHH=aB IH$6H<$H}H|$]'H5LD$,UIH HLH=AI7IƅM H|$HD$H H=AIH? L/MOLIVHt$LLL$LFHFLD$LD$,蕈MLl$L\$EMo xIMu LL\$H|$L\$]|$,Ll$xHH9$EL4$L9HD(A% HWD(A LH1SL5f.]Kf. WKIHDAL$,H=b@LH7 I?IƅHI?LILD$D$HHIQL4$HI7EAEL5>A6~ ff.fAVIAUI1ATUSHH=mCHT$D$Cc H\$H H%HHE I~L%:?L9AOMEAI9rAuHAuLIHIT$HAD$0ffo IIT$@HKIUAD$ IvI|$ID$LD$AL$0dlIx HIBMEExIMEs(D$ C,!HL[]A\A]A^HH9Hx HH-I~L%">L9!H5>m I~LHH==IHMEM9u*AEtAEH==IHgH5=LuMUA"HLH=q=IHIL L H-7!H}]LuMtg1i IHtXH-6 ]uuH H}uH-6 ]H H}uLLp MuExIMu2M$EIM$LE1 HuL wH /L%E$AIHI7L%A,$HuL 'EAE ff.AVIAUI1ATUSHH=?HT$D$s OH\$H H%HH1I~L%j;L9AOMEAI9rAuHAuL IHKIT$HAD$0ffo 9EIT$@HKIUAD$ IvI|$ID$LD$AL$0Ix HIBMEExIMEs(D$ C,!HL[]A\A]A^ HHHx HHI~L%R:L9H5B: I~LHH=:IHMEM9u*AEtAEH=9 IHH59L$ uMUAHLH=9LIHIL L H-H3!H}]LuMtg1IHtXH-J2 ]u\H H}uH-3 ]H H}uLLMuExIMumM$E#&HuL yH LL%E$AIHI@L%A,$HuLb D+EA2E*ff.UHSHHHHH=1H951H=1qH;51H=1VH;51H=1;H;51H=1 H;51H=1H;51H=1H1H H8H;pu@X HU uQ 1H[]@H)1H0H0H01!ˉfDH0l@H 1\LH5I8>kH|$H|$1GH=H5$H?)@AWAVIAUATIUHSHhH~D$( H;=9UH;f.@@f(1fT%@fV%?f.@Df.|$ fT?f.Y@hH8IH!1H8MHEIM~LH!L}H} 1f8IHr"HI]H$!H!M_LPD$,LT$A!Ll$0L"H4I9LHH!fo->f@0LpHH@@ h0IWLp@LsHЃH1H@ƉHAWHC0LL|$,HSHFHC L GLLLkHT$,A5 AL$(%A D$,ΉD$,ApL}EIL}}H@DIH, DHH L!LD$(LLLLD$虲HL$LHHt$TLD$LLHLLD$iA|$(D$(A D$,LD$LLLL(zLOHxOAl$(D$(A D$, t$ L<H+,$Hk HhH[]A\A]A^A_PHIwMA@H|$4WLZYT$,AAL$(AAE L$,DL$,DLUExILUuH6CIH%CHHL1 L\$(LLLپL\$$HL$LHHt$߲LD$HLLLLD$A|$(D$(A D$,LD$~LLLLxL NHNAl$(D$(A D$,t$ LAƴL+$$Lc HCHL1HC0CHC LDGD$ H|HE4IHg1H4I]HŅxHI]uLQH6L}H} 13IHH$I]H$iH<$'L$M_D$,ILT$ARLl$0LeH>0I9ML HHfo=I:fC0LsHHCs {0IWLs@LsHЃH1H@ƉHEGHC0LLCHcBHC LBHT$,LLCH5 Hf.*:,:f(1ҹfT 9fV 9f.Df.L$ vfT9f.9L+HH;t$ H{f$1LA0H!L(ACI8EpMhMtl1IHt]H-'Du*H H}uL=n(EwPI I?uLLM4$ExIM4$H3A!L'AXI;EkI{H<$Htm1IIHt^L%&El$]I I<$uL%'El$I I<$uH<$LGIx HILIHIH A!H59'EπH>D~LnMtm1IHt^L%:&E|$I I<$uL%&E|$I I<$uLLMEx IMQH;LHHH{1OdIt$LhIt$LsfHuLZ%H I I cLHNIwLIt$L6It$L#HF H51H8}>HHCHHHH3H.HLA!LHfHHHHwHHHHWHcPwHHHHc'HHGHH=$H;5$$H=$H;5$H=$H;5$H=$H;5$H=$tuH;5$H=$t^H;5$H=$tGH $ fH H9t2H;quq0u=HDAHH|$ZH|$HWtfHDAqHH #H Y#t@H i#d@H y#T@H #D@H #4L H5HD$I9HD$6ff.@AVAUATUHSHDo,1FH(H="It>H"H H;t$DktHsLH H;u1Du(IH,H=S"t?HJ"H H;t$DstHsLTH H;uHcU4}8HHuLMH HUAU1ATWDEPH=AAPLE I $H x2HI $/Iux HIut H[]A\A]A^8@SHHH0HHtH{t!1H[Ht$8Ht$Ht׃HH5H8#ff.SHHHHHH{Jt1H[HH5H8SHHtHHwCP1[HFH5gH8[fSHHH0HHHH9HGH{1tH[H=H5%H?AUATUHtSHFIHI4"H5$H=tUH5H*t2LHL]A\A]3HH5H:]A\A]]LLA\A]]LLA\A]4@G,HbÐAV1AUIATUSH@H=`)Lt$L;%Ld$MxI$HI$%ID$L@6HH$AoD$LHLH\$)D$AoL$ H)L$ AoT$0)T$0D$4At$(D$A D$,H|$IH@1D$HD$IH!$Hu3HH""LLt$HT$ It$LHLD$4;At$(D$A D$,cH|$MH@1D$HD$xIHt;HHMH|$A$Hd>Ic\It!ff.@AVAUAATUHoSHHH@D$ = "2IH!HT$Lt$ HHsHLHDl$46S(D$ C,ӀH|$ML@1D$HD$wHHLHu;LLH|$#Ld=Hc\IH@L[]A\A]A^LLl$<<HLH|$Ia#LM=뻉L k!C!I9 AYt6MqM1HHtqL-mI}t'A]u I I IuH8yW L-I}t A]u8I HLLUExILU LE1X<IuHy fAVH gAUATUHHHSH:HXL-VHD$D$ Ll$Ll$P1LL$LD$(ZYKH\$L9BLt$ H=!#1La Ld$ MmI4$Ld$J HI4$Q AoL$H|$)L$ AoT$ )T$0Ao\$0)\$@H9H}HH9MDEALl$DEMMI9A}A}HWIHLPH@0fIULP@HuHxLfo%t(@ LD$H@`0L]ExIL]]I]xHI]uLHt$T$~( V,HPL[]A\A]A^H5L8MEALLH=BIHH=ZIHMT$HfIULAD$0HuI|$fo5w'ID$LD$MT$@Al$ At$0L]EIL]MH{H5XLt$ H9Hs LIH|$L9t$ƅL8 Ld$H}HH9u4UtULl$MMI9EMAEMH5`HEt!HLH=9HHt$Ld$H-HP1H5H}E1#L5IPH51I>LmE!H-H}a]LuMtg1IHtXH- ]uuH H}uH-u ]H H}uLLMEExIME M$E(IM$LE15HuLwH /KHdH5%E1H:HuLG7HD$IHHHH\$HLd$DAWAVAULoATLUSHXD$5Ld$ H=1L'H\$ H~HHH'H=HHV'HHH@0fLxHH@HT$LLfo #H@@ H0NF(LLu HE LD$4]*IHI'oSLD$LHLLLD$)T$ o[ )\$0oc0)d$@D$Ds(D$ C,_LD$H|$L1@D$HD$/IH&HLH|$A_L5IcH}IDžHH}HM%MI?LL1L)HH% IH%HHHoLHE6%M]E;&Hy%HLMC~IH%HL&MIEIML2M%LHHHEHHEHMME^H$HL1`LIExILuxHMtIxHIuLHXL[]A\A]A^A_DMMEH%HL1ILExILtMMMuIIƅxHIuLM&%IHuHL1nL}IExIL}uHI4$HI4$LMg#L|$Ln1LLQH|$ILK2LEExILEuH@M##LH?HL1H)HH # IH #H9HHLUE"HM]EE{#ML0H-H5E1H}E1HE LD$Y0%IH"LLd$Hs HT$ LHLD$Ds(D$ C,MH|$L@1D$HD$IHfHQLH|$AL0IcIPLH5E1I8IMM LwL:/H KH5OH9H},!HH}!E1!Lq  I:` AZMZL\$Mtj1IHt[L%n  A\$udI I<$uL%3 A\$I I<$uH|$LIx HI Lr/HEb O It$LyI tL Lu t lD fDfoH!HXLIHHHGHGKHW HO(fHc HVH9w H71ÐR$w$ff.2$wff.Hff.G$ff.HGff.HGff.G(ff.Hc HH9w Hw1Hc H9w Hw1@w w(1ff.@e#wf.AWI1AVAUATUHSH8HT$H $"HEHEE7A+^1A-jAuMAM9AK0HLXMMHM9IAO0HJ @I!IYM9EAL 0HJHIILKL9'L0HJ PIMAM9 ALk 0HLIZMHM9EHk A0McLI wMAM9A Hk 0LcLI MHM9EHk A0McLI "MAM9E Lk A0IcIM MHM9|AMk 0LcMM> MAM9pEMk A0IcLIZMHM96AHk 0HHIt}MAM9FAHk 0LcIM MHM9 AIk 0HHIu.IqM9E Lk A0IcIIMfIL$IVH H$Ht$HhH8[]A\A]A^A_fMLAGM_MD@AAGM_@HIl'E7|AAMk MA0HIMDM@HE"HL\$ HHMI)MdM)MKL9seIc IM9wwIHuML9zL)Hu@M uHAGM_MfEw1IHc I9v1L|$ H$H躈}Aw@nt @NAw@ft @FmAHA3Aw@ni@N_AEIk MM0HHIMYILL{LMMYMMIPMIEGAat AAEOAnt ANwHI>AvHt$ Ip*IH8SL\$LD$ Mcc(I)IHD$L)L9E1LAHIIHIILt$LD$MiH$LHL|$H}(IL$LeLL$DL4MIMAM9LME1LH=6II6CT7C:2tB:7tHk Mу0HHI0AA@nt @N;H<AHt$ I )IHf8HT$LD$ H:LcR(I)HH|$L)L90MQMM"IPMI=MQMMYI@MIuMXMMIYMIIRMXMMMyMMMyILHIHMHUIf.AWAVAUIHATUHSH(T$`$H}HEL$I6H-ML9ILHHHqHMI؅(L9usHLD$HI H|$L1ɉJL}II+ML+]MM9ALI]H)H([]A\A]A^A_HO<0LD$HHD$Ht$H|$LLUIIxHM(LǺLT$J4LLT$IIIeHAHNH\HHBHI؅t-LCMfA0.MIxE1IM9LHI|$M+ EA(M)y M)-MAHLLD$Ld$1LI|$H)I]H t H}~HHdHIHHt|k9ANaNIGH}zHHjMH)CD0ILM(L1ɺK4III8IInfinityAGIGM-L{AH}H AsNaNIGAGFLILA@0H+uLH)H9Cf.AWIAVAUIHATUSHH(DIGI $L48u@uHILHH9HMHIHLc2@@L@ŀ|HZI9_LHT$4HHD$7Ht$H|$1ɉtIwL^M1IM+GL I9L9<$@ ALMeL)H([]A\A]A^A_H<HT$H|$LHHD$HL$Ht$H|$MWIIJHyM_(HL$LϺI4HL$HL$IHA$-IT$+EA AEE9MI)y L)-IAyLL $H$1LH{8I@!L.IFHHHIHL[ t I5IHLI@@M@ŀqLL5ANaNMNI*LL If0.HHzE1HL9+HHHHL IHH)BD0I5 IInfinityAFMNMA$-Mt$2MW(1ɺHL\$K4L\$I6MgI|$ AsNaNMNAFIGHHHHxNIHZV0HA%IH9A$+IT$uA$+Mt$HA$ IT$QDLGMc Le AWIcAVAULATUSLOIMHI9e I(\(HHIHDr0L$OOL9=sMHU LMdEI9t  I92\$#L} ؈EHH;]OH9(H9 H9(KMT\LUHfMGD$$<ML'MILIIHL9eLIHHIHL9HIHIMIM9HIHHIHL9HIHHIHL9xHIHLIM9iIHIIHIMIM9CHIHHIHL91HIHHIHL9HIHIMIM9 HA IHHLIM9w;HIHIHHHILIM9vM9MOH>zMqM9RLHLI6P^Cy 赩H}L)HHH}IH?HH)LNCL9tHH9HLM HM5L9E tL9L$$D$0H]MLeMioLd$0MBIcMZ(IT$It$(H}(I {HH}(IMN MgL9= MHU LMEI9t #I9cJ4fH9)[H9H9vHE1H9AIQ 4@H9+H9 v1H9HDKMDILUHhIL7LILHLIv8uLN>MM)I#NJM!L|$PILD$HHIEI&IHLHLH?H?HH%`L!LHD$Ht$HHHHIHD$HD$HT$LHLHHL!H)HHL$XHHD$HIEIfIHHLHHIH?I?L4M!LH%IIHIILIHHLLHM LM!LL)H9=ҸHM=ʸHt$PHD$XHH9E H9bL}(MHL$@ILL$8IvoLD$HMGIv`H|$PIIvQLt$XMwIvBLl$`Mo Iv3LT$hMW(Iv$AHT$@JKLL$8IM9w]A2$H $Ld$ ڈUIt$HqHuIFfHM L9 ͷLLMHM5H9O|L;=L;=L;=QL;=rIO$KtaHuHH[]A\A]A^A_ÐHHV(HA(I#NJL}(HH"IH?HIHIH%M!MIIILIIILIv8uIMLL)I#NJM!IIMDuA2$ALL$8D ULnLiLmIK|NMYIK|~IIK|tIIueHT$ HLL$8L}(MEHM A$2E1H\$H4$ ˆULcLfLe  H9O|L;=L;=7L;=L;=1L;=ǾH HH1H|$@L\$(HL$葂HL$L\$(HHOMLLܪLL$8LH9=HM HM= HH9IL}(M^MIKIQHHEM1L;=H fDL;=KL;= s1L;=HL;=SL;=Ľ&1L;=Hqf1L;=/HSI"LHH?IHIH%ļM!MIHT$s @HD$H#NJLT$IIIILIDIHM AfLDtfDHtWLHt$IH$HTLTfD1L;=OHc1L;=HKHHL;=HH-HT$ HL}(LM.IMLL LL$8LH|$@HT$ HH{LD$ HLH %A$$uIL$ML$(I|3Hƃ]Hj5IHMLt$L,$INMEMU(Iv(HLH軧Eu H}(LL$8eL}(LM HT$H4$Lr(Ln(HAI L9LD$8LLL5IMuHLLH賠sHT$ H-;@uLCLs(K|t1Hƃ:HLHL$(L\$2HHD$8IHH|$2Ht$LD$(HH"Ht$(LD$HLL$LD$(LHLLHD$2H|$AWMAVIAUIATIUHSHX\$ AAHz(HrH|H~0LMHHIHH9:I|$؃E LEL}(K| AE1AH|$H5ÄD$ H9HUH}(LH5H|HLEHMHI4HMHHxjHtILH94HtQHtILH9Ht8HtILH9HBHtH4I H9HHuLLL$DT$DT$LL$WA$HUL|$ LLMLLL$HD$t$ LD$LLLD$rMmD$LL$HIL9LHH5GLD$2A<$HI^ A>H9HT$8HU LfoPH|$HH|$ \$ I\$LL$I\$HT$@HD$(LL$IL9 LD$0A<$HLD$(II?D8M]IEI?L1L)H;nH;tH;H;H;zNHVD$EMDLHLQ HX[]A\A]A^A_fE1ILII@IHIMII9IMD$$11ڀ8$1EuAH}Hu(DH|A2E^vIL$I|$(H|`1ɺDLX&A L1II1IIH;L1II1IIHHLEHMDT$L] fInLfHnH|$HH|$ I\$AflI\$LL$APHT$8HL\$@DT$ T$(LL$HH9LD$0A$HLD$(II?D8GI}IEH?H1H)H;rwH;7"H;JH;-H;(H9HNgmL $DL$L$$LLLH9pH9S-H;>HH똈\$LL$DT$IعLhDT$LL$DEHu(H|$ LL$~MH]HM Ht$HL΃PMH\$8I\$HL$@I\$D$ HL$( IL9LL$&LD$(A$HLD$0II?D8I}IEH?H1H)H;H;H9H;HH{H;!HHhsLME,LHLL $j'AL$$uH5~LL$$A=LL$MMM+MIyLL$HL$LL$HH9L $HHLffDT$LL$K$1H9_viH;NHHLLL$L$D$LL$L$D$<$t DLʾLY$H9 H;HH H9H;۰HH MLLHLLL$LL$$]A $1AډȈ\$A$ED$I]A @HuI|$(It$H|AtILM}LLH5|L$$IWL)InAL$$11L!E1H5{HLL$D$eD$LL$fE$$AEkADEy211DL t$E1A LyfLG(HWI|tY1H9I4HHkA H1IHtHGHHH?H1HI1HIHuÐATH9LO(L_LV(LfK|KTHHWLFHHNHLH9u*IsI9u;HxMM9uHA\1HHH9AECD$HL)HI)LLLLA\bILLLLbH뙸뒄@@놃AWfAVAUATUHHpfo HH}HD$pD$@0LoHD$hD$HL$XMIL|$ILt$@L褏EMMHHEyL轾LLL诵T$@у2HD$HHD$PMu0HHp]A\A]A^A_LHHHMLHxHLt@t$@@HD$PHD$Hy@WMuHrMHLHUx#ff.AUIATMUHHu/ u'MM葽HLLH]A\A]zMLHHT$H4$CH4$HT$t H]A\A] HMH]A\A]"AWfIAVAUIATIUSH8IXAp,forHjL$4H$0IHHjLD$8H$0I(LL$(IHUƄ$0H$Ƅ$0H$HL$xH$$HT$pHDŽ$L$DŽ$$$$$A$IMH9 HHM5H@EMIu(H$HAoUAA0$D$HLH$L1L$0zHD$$D$hHH$Mg H9 AHHM5ܠI9D$MO(IOo$HH$AA A_EHcL\$LLMH hMIM1IIHt$L_I܃IH\H HHAMIH#NJI- MfK<$H$IIn(HEHHH?HHLHLH%H!HHRH4HHHIHIv8uN!Ld$hMLI!H)IHMLUAL$IfȃMAI~>J|u6MkIJ|u MkItJ|uIIu@IV L9-LMnHM5H9 JlH;-  H;-ԧ H;-I H;-, IHl$pODOLEMNDLHL*L|$?A MfIn(J|HD$hA!LnL^(HN4KT3LMtSHnLVM *IMxuH_Cy 5HHHH4HMl$H$I J,I]H|/Lu!L9-tLH$HM5s$H9 H9AL$ 1҃I ˆ$M>ML;=|L9=| L9=z|D L9=e| L$$J\cH$YqD$AHL$L$M|M9'$H$uH$L95H9@$@ $Hl$LT$hL-{Lt$(DŽ$K\HHT$`Ht$L肜HH HE1HHII7HHtAHIIHH={H,$Ll$ HAIcLkL9t$  L9HL$L$$w0D$HyJc,HI3D$@D$@Mt D@ $Hl$DD$$HEHCD1AH$HȃD ʈ$&N4I]L9-EjLL$HM52j$L9t 9L91AL$Bƒ8fDL;-sL;-sA E1L;-rAMT$L; rL; r 1L; r@HL9=r#L9=rA E1L9=vrAI1MaH$H$QH~L$H$JlH;-.r H;-q2H;-qE1H;-qAAIIcKMGLH$H9$Ld$LH$Ht$ H$@HfLnLD$D$}DL; qRL; q>1L; q@H(L;-q-L;-lqfE1L;-TqAMSL9=QqL9=4qFE1L9=qAIOfDAeDAD1L;-op@LW:f.1L; Op@HJf.E1L9=.pAIfLd$E1E1H$H-!<L$H9ZH9fHL$HM5fL9t _L9oIHEIt$(IHU(H$ILHtH<$1HIH<$ILLL \L$LDD$$1HmHkD1AH$D $@Hl$H\$6f1L; o@H f.E1L9=nAI QfE1L;-nAMP ifHl$H\$I H$IIILME1L9=VnAIE1L;->nAMQf1L; n@H f.1L; _n@Hf.H;-)nEH;-n>H;-nH;-mEA fD1L;-mLR[E1L9=mAI Hl$Ld$HIAHl$AH5vdAL%Q9H9"dHHM=dH@ H<$LHLD$P10E$It$H$$Ll$PAMl$H$LMLd$HL$D $HE$L$H9MAIHL$Ht$` A&$Ւ$L\$`D$AE A@EH []A\A]A^A_L;=}lMIL; jlHHL;-WlMIH$Ld$E1E1H$H-7ILTI:HMD$IL$H$I@H9' HHHHEMlL9PM)Ht$MtJAHIHHHL$@H|$HLL#LMH$HE$Ld$HHLIJ|MpLIHmH;-jH;-jA H;-jEAH;-jH;-jH;-jEAL$@H|$L pL$H;-(jEAPH|$H$@pL$H$0IAHILIII H<$LPL$LRH;-iEAH;-jEALd$HHl$AH;-iEA HN\NLM9LkHNN M9IIuE1A1MUD$AEM1D$AAAHl$AL%4HEH;-!iEAALQIMI)M9H$L9H9|H$~L$@H|$LnLn_Hl$ALAE1L%34}L]H$Hm(ϐ@$J|Hl$0DL$pII:i$$M>H$H|$.no1ɺ1Le1I,L$A 1IIMH HD$@p1IINtLJ IM%LIIA t$H$H|$$@ H$H$HH)H|IT$@ L9!Hl$HL)HHT$ HH$@HHcL$8 $@cH$L$ @P$@I|$?H$H$L$@H|$HL$ MH2HZH|$1MH1H$@H$\TH|$L$@HL$ HT$MHS$@$Vfo-TjL$$fH$pfo5dfocƄ$0L$L$HDŽ$pƄ$H$$$$$MHl$AL[LL%0AE117$L$tIL+$L$H|$ $@-L9H|$H$$@AL$u@uL$H$J|3$H|$ӏaD$AuL$H$J|D1LH|$I3\IcHTIH HMLCLK(Hu(HLHO$uH$ZH$$L$H${L$J|W$7D$H hNcLj@}tL9ipHEH HH)I9YHVH^(H|aLFLNLL)II9+Hx]LLRw1MT$Ml$OlL9mL]IL+]M9HLHL[]A\A]A^_fLLLL)HH}$Ml$~u$L]McMAHwPIL$Ml$HRI\ H9]|WHEHH+EH9|FA@UE1HAEtIt$I|$(5HL]IL$H;M~HLL[]A\A]A^L1LH*E $AEuIL$@MD L9E|LMIL+MM9|A HE $AAE1HA1E1HA!I|$( 1HHHHHmH_IL$ZHMLH4$HT$H4$Hl$tH[]A\A]A^MD$(MA EHLL[]A\A]A^vIL$fATIUHSHH$HD$tlHTH;TH;TH;TH;TB˃Ht$HHcm HvH$Ht-Ht'H[]A\HI<tHcHD$11H|$HH;TrVH;TH;TsH;sTɃqH|$u鎌H;eTɃSH;SɃBH;TrqH;T'H;TɃ H;SsH;SɃH;S H;SɃH;SɃH;SɃ SHH tHS(foQCHH[H5JH9w ~H(HL$D$y|$HC(uHIHC fAUIATIUHH6@IT$HL9tgI|$LM H9=IEILMIM9uRHU EIt$H}IL$HuIt$(H Hm(HLLUH]A\A]D M9~HLHWtA4$EIT$I|$wI|$ID$(H|LHHHL$7HHtA}$HEtAM$HXXLL$LcIAHvHHL]A\A]֒H5/Le(M,$AHDmAEHDmAAE1HAE1HAE1HALU(A 1IIHHPHAHH1]1A\A]#LHL$L\$bHLHL]A\A]qHLHWbff.@AWAVIAUATUSHHH$L$4H Ht$LL$(HD$ H9.EfHI*f^aH*Yf/aHH,HHt$H9֌H95FI^ HM5FH9LD$I~(MH]AELMMH#NJLtNI~(ILLLd$HHl7IHL\$I~(HLA9HHMMMMLkLt$LII(ILLH7IHH|$HLBI(Q9HeI(ILLLt$I]H6IH&HL$I(LH9H^MHMMMMl$L9d$MLl$MF(Ht$Ll$ILLMHE?LM(HEH]AD |$4D}MTL;8N"L;NL;M1L;ML[HIIv K IKHH9DLMDIFI9NHT$ Ht$(HHL[]A\A]A^A_-VDMVL;t$I(Ht$HLT$LT$8JL7H|$8H!IfDMVL;t$҇I(HLLT$LT$8JLt$Cs7H|$8HtIDL;1ML; ML;M L;L MD$L;d$I~(HLLD$LD$8JHD$6H|$8HHMMI,L;eLrhL;lL `L;RLOL;YL >L;LsML;oLs3L;^LL;K L;KL;;LL;:LA ɈH9HT$ LNQ/MHM鐈MHMMMA HT$ LLQHT$ Ht$(HHL[]A\A]A^A_SMHM4AWLLQAVIH_Cy 5HAUIATIUSHHH4H<HHH,{I)ZL JKDL)OHM1H#I|#HHI<t d1HHD$8HT$0IƤ~1IHD$8HT$0sH1H HHD$8HT$0cHHt$0H|$8HLD$LL$膺LL$LD$HD$80'1HHD$8HT$0A1I IHD$8HT$0LIKLJ9 IA1IHD$8HT$0ff.@HH vZHHuHd 1HHHHHHI]xEc1IHHHHuA 1IHHHtHuAd1IHHHu HHHHuA'1IHHH HtNH uA1I IHHH usAQJ1I IHHIo#1IHHI@zZ1IHHHƤ~1HHHAsH1I IHHv1H HHHA1IHHff.@'ff.AWfAVAUATUSHhfo SJHD$`LD$D$00HD$XD$8L$HIAIHQ(HIHH|IHH2HIE1ILIM9(IIH}IO IIL9lEfI* fI*^f/@V@%:Vf/L,MbILPIHEH~AфIw(MWJ|(MwM}H6P^Cy M_MLLHH?HH)LN CM9CHHL$PH9:ILM:I9PD$0 I9IH|$XMLHt$0EH\$HIGMwD$ALt$@D HD$8LT$X@t$0E1M~M9LLDHI#NJL$-HuHL$B3I|ID$0>HhL[]A\A]A^A_Ð\L,I?RDE1IHMCHIHLII9 HMC1H1HHHH1IH1HHHdfH?9'GHEHUA I_Mg(I|D$IAIHIw(MWJ|=H4IGHHHHHHH9v8ILD$PLMf8M9tD$0 tM9!H|$XLMHrDL$0EH\$HIOMAAE MHL$8DL$0L|$@LT$XHT$H|$0La3D$LmAAEMI|uHHuAK|uIրD$0HD$HT$H|$0LKaH\$H;D$D$HT$H|$0LE\MWIw(րuHWHG(H|t\HO SH_H_H9wZfH*Cf(fH*^f/Qw/Qf/sH,H[ø\H,H?H[؍Bff.@黲f.SMlL1LH+rI#NJLHIL^MI)LH+ZI9YI#NJLH_IL^MI)LH+ZI9OI#NJLH_It{LNMI)LH+ZE1I9A*H#NJHH_ItCH#NJANLL)J+E1L9AHJIM9uDI9ruG[f.N I@MIYI#NJIDAJH9s EIL9vN N IL9u[fHII9„tH_It1JIM9DH_It1H_ILMISIDIHI9KCNMIBIDAJIL9Eff.ILAWH_Cy 5AVAULiATUSHHHHLI,2LnM)O,LcHHT<L)NIH HwzHHHHIKY8m4LIMH Li'M)HHML[]A\A]A^A_\fDHH HHXIBzՔLMIHHiꀖI)DHH v:H  H͕PMB LMI@zZHH*LM)3H u2H$ LMIvHHH$LM)DILH TIMH!HI)Iaw̫LMIHLiM)fHLMHHL4MM)I ~DJHHqIJ,LId IvHI TI(\(MI  IaIgIIIL1A'IIIHHHH]HLfDH^HHIu@LMHƤ~HIHHI)YfI(\(LHIMIHIIK,HI)IcI&I v*I mL1I@zZIIfDI ]L1IIfDLIpI SI6IA1IIfHS㥛 LMHHHLiM)FfDIЄK8LIrN IMH)LM)I4ׂCLIMHLi@BM)f.HSZ/DLMH HH Hiʚ;I)fDH3"[3/#LMIHH%LM)L1IrN IIL1IIA@B1IIvAʚ;1IIcA1IIPL1III6fDIIGwILMHd HIHHI)IOILaNHO4ILyN4HKIHAJHII I HHutfHCxqZ| LMHHHLiM)&fDLIHHHHHHHHHUI)H-LIIIIƤ~1IILHIHHHHHHI)IWx/e9LIo#IMH3LM)CIS;\LI]xEcHIMHLM)L1AII)1IIA1II Io#1III]xEc1IIff.ATUSMI#NJE1HHAL9MHIEHnLZIML9I#NJM9L_1I LNLRMIM9H#NJI9LWE1IH^HBHLH9I#NJL9HG1IL^ Lb H#NJMIM9I9AD DۄLg ItXH#NJIv8uHL IMI9AI9AE EE#L HI9ufDI91u[]A\1LH9vIJMPJI9sN IN I9sNNIL9tHv8uHHIv&A@Iv8uMLg II9\Hv8uIL_Itӻ(Iv8uMLWItAAIv8uLHGItZML HI9mH#NJJHH9AJILMAfAWAVAUATUSHHHt$H|LjHIIJH11H贶MNJDIH)I,I#NJHLL$IIHD$NȸZM1IHLL1VLL$LMfJDIH)IHJ I#NJIHHHT$JHII1LLIH1IL޵HDILH)Mt$MSI#NJHIIJHHD$N$E1ILLMH1ILpMNHDILH)MHLL$I#NJN4IIHD$NȸME1IILL1LLJD5IH)HD$LpHtyH#NJHD$ Ld$ HD$8HHH\$JHHD$0Ld$0HT$(Ll$(LLLl$81L芴LJDIIH)HIuHHH[]A\A]A^A_@1ILVE1LIML1L\$LLL$*H|$HDIHBHRMHJ1LIHL1LLD$JD5IMpH)M[MLRE1LIML1L\$LLL$蟳H|$MNHDIHH)M* fAWHIAVAUATUHH_Cy 5HSHLIILZM)HI *IhI~IdI IPIKY8m4HIS㥛 IH Li'IL)HHIHLiIL)f.H@MkL9*AL=--LM)HOL?HtFNDLGHt7JLHOHt(JtHwHtAKJII9ufM*fII IrI*IBzՔHIHHi€IH)"fIHIH TH!HIH)IHI TIH!LIL)MiI II͕PMB HI@zZIH*LIL)ISZ/DHIaw̫H IH Liʚ;IL)HIHLiIL)DIaw̫HIHLiIL)IBzՔHIHLiꀖIL)IfI tRI I nI  iI3"[3/#HIIH%LIL)I$ HIvHIH$LIL)IHIHHIHH)ILKLII92fIIIHu@IIIHƤ~HHIH)I(\(HHIIHILHHH)fDIvIIHMiIu@IƤ~HIHLIL)IvIIWx/e9HIo#IH3LIL)YfIS㥛 HHIHLiIL)I(\(HHIIHILL4IL)<I(\(HIHIIHILL$IL)HIHLMA>fInfHnIflAIM9HH9l$Hl$(L\$L9\$t*H|$@T$LH|$HD$@H=L$XHH9l$Pv+Ld$PLl$@Lt$fDHLLH!I9wH|$@AqHhD[]A\A]A^A_HHIII(MILHM) I(MsHHHI)H(IHL9H1HIHT$IH9@L<$H)HH|$L<$H(HIHMIL)LH(HsILHL)I(LH4H9+H1IIHT$IH9L<$H)H'Lt$H $I(IHIII)H(LsILHL)0I(L0HH9H1IIHT$IH9@L<$H)H<Lt$H4$I(IHHHI)H(LsHIIH)EH(HEMNH9EfInfHnIflAAM9H HILIH LILH L)!I LIHL9HHIHI H)H HIMI L)HI LMDH9;HIIHI H)cH HILH L)HNI LgH9HHIIHI H)H HIMI L)H I LMxH9ofInfHnIflAaM9Gf.MHH)MLHI9HI(IHIII)xII(MsIMIM)OI(ML6Mu H9H)IHI H)LHH HHIII I)IH 1LM@HHIH9vMt H)HfDMI M)II MIMI M)I MLnMu H96H).fH)H)#H)I)WH(HIsHL9HH1HIIHT$HM9LH$@L)H @H,$I(HLsHH9~HuH1IIIHT$HM9LH$@L)HfH,$I(HLsHHH9 H1IIIHT$HM9LH$L)HH,$fDIjHIHH,$2H,$H,$HHIHH(LHHHHH)HH(HHIIH)IH(HAHEIIH9MLL)I"HMMHIH IHHI LHHII H)IH E1HAIMu H9 H)IHHHH(HHHIIH)IH(HMIHLHL)HII(MAMEIu L9I)MI)1H)H)H(IHsIMu H98H)0IHIIHJHHH"IIM4R4HH"IHH943I~I"HLH44HH"IHHH9A434HItIIJI_IIHIH(IMxH"IILr1M33H)HiI <3{323333333S3AWAAVAUATUHSHhH|$ HT$X3HHھLcID)DDd$4HD$\HH|$HT$DHD$HH@4HD$ H4Ht$PH9s9DLd$ Ll$HLt$L|$PH@LLLIM9rHc|$XL VIH2H|$HD$(LT$HT$ IH"I!AIHH!IHT$@LT$8H|$(LHHIIHHM9 I1HI)H HHHHH"LHHIIH)IH"HIMIL)II"IALEM93L903MM)LHM9HI"MIIMIM)o LH"Ls MIL) I"L M2H92HHHHH)1H9H@M, Hv HIHHI"LHIHHI)HH"IHLHHH)HHH"HAEIIv2H9m2H|$L$4H|$ MHD$@IN LD$8N,HI!IyIII)H9MKH HHIII"MILHM)g I"MsHIII)S H"I M1L91H1HIHT$IH9@L<$H)H H|$H$H"HHHIIH) HH"HsIMIL) I"L M1H90H1IIHT$IH9L<$H)H|HT$H $H"HHIIH) H"HsILHL) I"LV H 0H90H1IIHT$IH9@L<$H)HHT$L4$H"HILHL)9 I"LsHIIH)% H"H H9/M/fInfHnIflAIM9IL9d$HT$Ht$H|$ {.Åq Hl$H9l$t*H|$HT$XHHD$HH.L$\AHl$ Ll$HLt$Ld$PIHLLLfL9rH|$H14HT$Ht$H|$ -Hh[]A\A]A^A_f.HHIII(MILHM) I(MsHIII)H(IML9H1HIHT$IH9@L<$H)HH|$L<$H(HIHLHL){LH(HsHIIH)H(HM,H9#H1IIHT$IH9L<$H)HHT$H $H(HHIIH)H(HsILHL)(I(L(HH9H1IIHT$IH9@L<$H)H4Lt$H4$I(IHIII)H(LsILHL)=I(L=HFH9=fInfHnIflAAM9H HILIH LILH L)I LIL9HHHIHI H)H HIMI L)HI LM<H93HIIHI H)[H HILH L)HFI L_H9HHIIHI H)H HIMI L)HI LMxH9ofInfHnIflAaM9tfMII)HLHM9HI(MIIMIM)~MI(MsILHM)UI(ML3Hu H9H)IHII H)LHI IHMHH I)HH 1LI@HHIH9vMtH)HMLI L)II IMIMI M)I ML_Mu H9H)H)H)+H)I)_H(IIsIL9MH1HIIHT$HM9LH$@L)H@H,$I(HLsHH9~HuH1IIIHT$HM9LH$@L)HfH,$H(IHsIMH9 H1IIIHT$HM9LH$L)HH,$fDIrH IHH,$H,$zH,$HHHHH(LHIIII)IH(LIMIL)II(ILDIIL9MMM)I"IMLIIH IHHI LHIII I)IH 1LILu H9H)IHIHHI(IHLHHH)HH(HIIHLHL)HII(MAMEIu L9I)MI)1H)H)I(HLsHHu H9@H)8IHIIIRHHH"IIL94&[%II"ILH9&$I[I"HLH}%s%HH"IHHH9%%HH|IIRIgHIfHI(IMM~uI"ILrIHnIHM)]IBH(IHrMu I9L)IHM)fInjI"IMLD$r+L;d$VHIIOHe;f.H=HH9tH_Ht H=H5H)HH?HHHtHe`HtfD=Eu+UH=J`Ht H=nX)Vd]wAWH7AVAUATUSHQH_H d_H55_HfHH H5qHrEL^H-_H5H}`Mc`LGLLW(Ml$@IL΄L LL-HHUHH5_iHjHUL5^H= L5L5]L5~L5}ZQRUH=;FQ>UH={2Q*UH=s}QUH=$SIHTH=HH5NXH=LH5N|XM<$ExIM<$XXH={/RHHTH5kHTOHHWHH 1H"!H5DNHNWHWH5-HOHH$WHx HH{WHMxHHMWH=QHHSHL1H HH5NNHwIHUH=i#RIHVH5LHHH5GMUI<$xHI<$UH=PIHUH5HNIHUH=v\I1H yH`H5dOHxIHRLEExILE1UM $ExIM $ UMUExIMUTH=KaOIHRH~HH5gHƁiOyTHJ|H5$LKO[THH5NL-O=TLN[1H=}I3MNHVIHTHH5`LNS NHπIHSL=,wA$AH518QIMSI1LMIIHfSI,$xHI,$CSIIL,NH|$LEx ILt!t$ HWIQH L]A\A]M>F>H|$LEx ILPLd$AUIATIUH D$ HYQHHxHHEQLHt$H1a'Ld$1Ht$HLB'H=n.IHPHT$Ht$HMHxLD$ HRHvNH|$Hx HHt>H|$LEx ILt!t$ H'PH L]A\A]==H|$LEx ILPLd$AWAVAUIATUHSHHKH\$HH\$PH\$XH\$`H\$hH\$pH\$xH$H$zH`IHxHI$NQP1H$RH H$QH &OH$VLH$WHL$APL$AQL$ARL$L$;;H@L\$HI9Ld$HH=i0?HD$IHH|$H1#IFHH1PE<$AtE<$Ll$HD$xHT$pHL$hHt$`H|$PMeHD$L$HT$ L$HL$(L\$XHt$0H9t7L\$KH=dH9 dH=dH;dH= dH;d~H=dH;dH=dH9dH=dfH9$dH=dKHdH H:4H;BuB`A IAGH}DWjMI9YI\$ LE1E1;IM9DLLH=CH5 H?5#7HH {CH5 H95HD$7Ht$HLCCH5 I85LH4|H-CH5 H}P5H|$HD$8,7H|$Ht$8Hl;HD$7Ht$HEIff.SHwH1HtHIHCt[fATSHQD IHtOHxHI$zIAt$PH{yIHmIHH=12LH@gILZ[A\DPHBH5 H8)4ZfQHw1HtHIHAZff.UHHH} H]A4AVIAUIATIUH(HD$D$F H$IHHxHHEH1Ht$HL1Ht$HLrL;%JAH=mcIHWHHT$Ht$HMHxLD$HHMLD$ZH|$Hx HHH|$H7xHH7u2t$HkH(L]A\A]A^1Ht$HLFH|$L7Ex IL7GH|$L'ExIL'u2Ll$MPLL$ILH|$H0HH#1I}GHI}GLE1161H|$H/x HH/6GLl$ Ll$fAUIATIUH D$ 4 HDGHHxHHEjGLHt$H1Ld$1Ht$HLH=ca~IHFHT$Ht$HMHxLD$ HRHvH|$Hx HHt7H|$LEx ILt(t$ HwfFH L]A\A]m0f0H|$LEx IL'FLd$ATUSHHD$ HFHHxHHE|FH=p`IH\FHsHxHL$ HUt$ H FHL[]A\fATUSHHD$ xH3FHHxHHE#FH=_ IHFHsHxHL$ HUt$ H-EHL[]A\fATUSHHD$ HEHHxHHEEH=P_k IHEHsHxHL$ HUt$ H nEHL[]A\fATHHUHHHt$D$thH=^ IHMEHD$HUI|$HL$HpqH|$Hx HHt$t$H /EHL]A\E1-ՐAT1UHHH5;H8HL$HT$D$ 0HT$Ht$ H4HT$Ht$(HH=] IHDHD$(Ht$ I|$HMLD$ HPHvzH|$ Hx HHtVH|$(Hx HHt:t$ H u H8L]A\I<$xHI<$uL,E1,,H|$ LExILtfDAT1UHHH5H8HL$HT$D$ s/HT$Ht$ HHT$Ht$(HH=\ IHCHD$(Ht$ I|$HMLD$ HPHv谗H|$ Hx HHtVH|$(Hx HHt:t$ H u H8L]A\I<$xHI<$uL+E1++H|$ LExILtfDAT1UHHH5H8HL$HT$D$ 3.HT$Ht$ HHT$Ht$(HH=f[ IHBHD$(Ht$ I|$HMLD$ HPHvЖH|$ Hx HHt4H|$(Hx HHt&t$ Hz BH8L]A\r*k*H|$ LExILu N*E1E1@AT1IHH5H HL$H-H$Ht$LHT$Ht$LqthH=FZaIHBHD$HL$I|$HPHq9H|$Hx HHtFH|$H7x HH7t*H LA\H|$LExILuZ)E1P)I)AT1IHH5H HL$H,H$Ht$LHT$Ht$LqthH=FYaIHTAHD$HL$I|$HPHqٖH|$Hx HHtFH|$H7x HH7t*H LA\H|$LExILuZ(E1P(I(USQHGHHVHtxK@HnH9-n\u3:98AAE8@L=6EA@ZL[] tHHu,Hu9L5H5H5H8'E1Ā]@(L]5ff.ATHHUHHHt$D$tkH=WIHS@HD$HT$I|$HpH|$Hx HHtt$H?HL]A\&E1DHHHHt$Gt HD$H1DATHHUHHHt$D$ tkH=VIH?HD$HT$I|$HpEH|$Hx HHtt$Hi?HL]A\ &E1DAT1UHHH5KH8HL$HT$D$ (HT$Ht$ HDHT$Ht$(H%H=UIH?HD$(Ht$ I|$HL$ HPHv$H|$ Hx HHt4H|$(Hx HHt&t$ H>H8L]A\%$E1H|$ LExILu$E1AT1UHHH5H8HL$HT$D$ 'HT$Ht$ HHT$Ht$(H H=TIHR>HD$(Ht$ I|$HMLD$ HPHvPH|$ Hx HHtVH|$(Hx HHt:t$ Hu H8L]A\I<$xHI<$uL#E1##H|$ LExILtfDAT1UHHH5H8HL$HT$D$ S&HT$Ht$ H HT$Ht$(H H=SIHW=HD$(Ht$ I|$HMLD$ HPHvpH|$ Hx HHt4H|$(Hx HHt&t$ H2=H8L]A\""H|$ LExILu n"E1E1@AU1ATUHHH5H@HL$(HT$ D$!%&HT$ Ht$0H HT$(Ht$8H &H=TRoIHHD$HUI|$HL$HpaH|$Hx HHt$t$H>HL]A\E1 ՐAT1UHHH5JHHHL$HT$D$ LD$ "GHT$Ht$(H? (HT$Ht$0H HT$ Ht$8H H=OIH=HD$8HT$0I|$LL$ Ht$(LEHHHRHvH|$(Hx HHtYH|$0LEx ILt*H5E1H:tvI$xHI$uLH(HHHt$t>HD$Hxt0H**t;H|$H7x HH7tH(1H)t<;HD$HD$ff.fH(HHHt$tBHD$HxՃ:Hf):H|$H7x HH7t H(1HD$HD$ff.H(HHHt$wt>HD$Hxfu0H(:H|$H7x HH7tH(1H(t[:HD$HD$ff.fSHHHH Ht$tVHD$HsHx]t-H( :H|$H7x HH7tH [H%(t91HD$HD$@H(HHHt$Wt>HD$Hx%uAH'9H|$H7x HH7t H(1HD$wHD$H'tM9ff.fH(HHHt$tQHD$Hxu,H:' 9H|$H7x HH7tH(H>'t81HD$HD$ff.fH(HHHt$7tBHD$Hxo8H&8H|$H7x HH7t H(1HD$SHD$ff.SHHHH Ht$tgHD$HsHxmu-H"&$8H|$H7x HH7tH [H%&t7HD$HD$1@H(HHHt$'tbHD$Hxu,H%7H|$H7x HH7tH(H%tv7HD$8HD$1ff.fATHHUHHHt$D$thH=^GyIHI7HD$HUI|$HL$HpaH|$Hx HHt$t$H6HL]A\E1ՐATHHUHHHt$D$thH=FIH6HD$HUI|$HL$HpѓH|$Hx HHt$t$H6HL]A\E1ՐATHHUHHHt$D$IthH=F9IH6HD$HUI|$HL$HpH|$Hx HHt$t$HP<6HL]A\E1CՐAT1UHHH5H8HL$HT$D$ HT$Ht$ HHT$Ht$(HeH=6EQIH5HD$(Ht$ I|$HMLD$ HPHv耗H|$ Hx HHt4H|$(Hx HHt&t$ HJ5H8L]A\B;H|$ LExILu E1E1@ATHHUHHHt$D$ythH=NDiIH5HD$HUI|$HL$HpH|$Hx HHt$t$H,5HL]A\E1sՐAT1UHHH5H8HL$HT$D$ 3HT$Ht$ HHT$Ht$(HH=fCIH4HD$(Ht$ I|$HMLD$ HPHv`H|$ Hx HHt4H|$(Hx HHt&t$ Hz4H8L]A\rkH|$ LExILu NE1E1@AT1UHHH5H8HL$HT$D$ HT$Ht$ HHT$Ht$(HeH=6BQIH4HD$(Ht$ I|$HMLD$ HPHv蠝H|$ Hx HHt4H|$(Hx HHt&t$ HJ3H8L]A\B;H|$ LExILu E1E1@AT1UHHH5[H8HL$HT$D$ HT$Ht$ HTHT$Ht$(H5H=A!IHX3HD$(Ht$ I|$HMLD$ HPHv H|$ Hx HHt4H|$(Hx HHt&t$ H33H8L]A\ H|$ LExILu E1E1@AT1UHHH5+H8HL$HT$D$ HT$Ht$ H$HT$Ht$(HH=?IH2HD$(Ht$ I|$HMLD$ HPHv`H|$ Hx HHt4H|$(Hx HHt&t$ Hr2H8L]A\H|$ LExILu E1E1@AT1UHHH5H8HL$HT$D$ sHT$Ht$ HHT$Ht$(HH=>IH1HD$(Ht$ I|$HMLD$ HPHv H|$ Hx HHt4H|$(Hx HHt&t$ H1H8L]A\ H|$ LExILu E1E1@AT1UHHH5H8HL$HT$D$ CHT$Ht$ HHT$Ht$(HH=v=IH1HD$(Ht$ I|$HMLD$ HPHvH|$ Hx HHt4H|$(Hx HHt&t$ H0H8L]A\ { H|$ LExILu ^ E1E1@ATHHUHHHt$D$thH=<IH0HD$HUI|$HL$HpvH|$Hx HHt$t$H~0HL]A\E1 ՐAT1UHHH5H8HL$HT$D$ sHT$Ht$ HHT$Ht$(HH=;IH0HD$(Ht$ I|$HMLD$ HPHv萂H|$ Hx HHtVH|$(Hx HHt:t$ Hu H8L]A\I<$xHI<$uL E1 H|$ LExILtfDATHHUHHHt$D$thH=:IHR/HD$HUI|$HL$HpH|$Hx HHt$t$H4/HL]A\E1 ՐATHHUHHHt$D$9thH=:)IH/HD$HUI|$HL$HpH|$Hx HHt$t$H@.HL]A\E13 ՐAT1UHHH5{H8HL$HT$D$ HT$Ht$ HtHT$Ht$(HUH=&9AIHl.HD$(Ht$ I|$HMLD$ HPHv0H|$ Hx HHt4H|$(Hx HHt&t$ H:G.H8L]A\2+H|$ LExILu E1E1@ATHHUHHHt$D$ithH=>8YIH4.HD$HUI|$HL$Hp!H|$Hx HHt$t$Hp-HL]A\E1cՐUHHSHHHt$-HD$HsHx訟H|$HHx HHtHh H[]f.ATHHUHHHt$D$YthH=.7IIH^.HD$HUI|$HL$HppH|$Hx HHt$t$H`@.HL]A\E1SՐATH UHHHHHPL%kHD$(D$Ld$(HD$@P1LL$(LD$ .ZYWHT$Ht$(Hm8HT$Ht$0HNHT$ L9H=6,IH-HT$0Ht$(HMHxLD$8HHMuzLD$ H|$(Hx HHH|$0H7x HH7t$ HHHL]A\Ht$8HO,MPLL$ IL~H|$8HlHH_UH|$(HxHHuE1y[8I<$xHI<$uLf.AT1UHHH5H8HL$HT$D$ #HT$Ht$ HHT$Ht$(HH=V4qIHc,HD$(Ht$ I|$HMLD$ HPHvH|$ Hx HHtVH|$(Hx HHt:t$ Hju H8L]A\I<$xHI<$uLQE1G@H|$ LExILtfDAT1UHHH5kH8HL$HT$D$ HT$Ht$ HdHT$Ht$(HEH=31IHh+HD$(Ht$ I|$HMLD$ HPHvPiH|$ Hx HHt4H|$(Hx HHt&t$ H*C+H8L]A\"H|$ LExILu E1E1@AT1UHHH5;H8HL$HT$D$ HT$Ht$ H4HT$Ht$(HH=1IH*HD$(Ht$ I|$HMLD$ HPHv H|$ Hx HHt4H|$(Hx HHt&t$ H*H8L]A\H|$ LExILu E1E1@AT1UHHH5 H8HL$HT$D$ HT$Ht$ HHT$Ht$(HH=0IH)HD$(Ht$ I|$HMLD$ HPHv蠤H|$ Hx HHt4H|$(Hx HHt&t$ H)H8L]A\H|$ LExILu E1E1@AT1IHH5H0HL$HT$\HT$Ht$ LHT$Ht$(LtsHD$(HT$ HpHzuEH( )H|$ LEx ILt`H|$(LEx ILt9H0A\H 0t(H|$ LExILu1HD$HD$HD$}HD$fDAT1UHHH5H8HL$HT$D$ 3HT$Ht$ HHT$Ht$(HH=f.IH(HD$(Ht$ I|$HMLD$ HPHvH|$ Hx HHt4H|$(Hx HHt&t$ Hz'H8L]A\rkH|$ LExILu NE1E1@AT1UHHH5H8HL$HT$D$ HT$Ht$ HHT$Ht$(HeH=6-QIHR'HD$(Ht$ I|$HMLD$ HPHvH|$ Hx HHt4H|$(Hx HHt&t$ HJ-'H8L]A\B;H|$ LExILu E1E1@ATHHUHHHt$D$ythH=N,iIH'HD$HUI|$HL$Hp1H|$Hx HHt$t$H&HL]A\E1sՐAT1UHHH5H8HL$HT$D$ 3HT$Ht$ HHT$Ht$(HH=f+IHB&HD$(Ht$ I|$HMLD$ HPHvЊH|$ Hx HHt4H|$(Hx HHt&t$ Hz&H8L]A\rkH|$ LExILu NE1E1@ATHHSHH(Ht$tZHD$SPH|$HpwMH|$HHx HHt1H%H|$H|$I,H(L[A\E1HD$Ht$ff.fATHHUHHHt$D$ thH=)IH`%HD$HUI|$HL$Hp!H|$Hx HHt$t$H$HL]A\E1ՐATHHUHHHt$D$ithH=>)YIH$HD$HUI|$HL$HpH|$Hx HHt$t$Hp$HL]A\E1cՐATHHSHH(Ht$tZHD$SPH|$Hp$H|$HHx HHt1H$H|$H|$I+H(L[A\E1HD$Ht$ff.fSHFHHH9,tƃt[HV2H{iA1E $[fUHHHH Ht$#H|$H.H|$Hx HH#H ]ff.@AVAUATUHSHH=k'HD$ zH#LhLt$ IHsLLSt$ H}#HuLLs;t$ Ht#HL[]A\A]A^ff.@AWAVAUATUSHHoHHtH[]A\A]A^A_fo(1Hfo 1H|$(HT$Ht$ D$0fo1HH$HH{HD$HT$XHL$ D$`H$HD$( Ƅ$D$H<$L$8D$HL$hD$x$$oA_L$L6IH}"6IHv"Hs Ll$HLLH襨LT$0H$LT$LLMML诎H4$LL R0"IGLhLLLfo/LIXLIL$M)$BlHT$LMLL|[LLH<$IuIItwD$!LLQALIAHkHHLLH謧LT$0Ht$`LT$H<$/Ku8H<$?tHHIH<$LcIi/LH5I; oAW1AVAUATIHH5UUHHD$HT$#Hl$HH}L-#L9 L/H}Ht?11HYIHHLRLIHL]A\A]A^A_éu=H;=MLlLHILD$M|$=IH HULpIAI-1I@H|D]LP@LMH@0y5IE L5HT$LL 7t$LMeEIMeLE1H5HHH6IHtsHI?Iƅx HI?MtOLLLIH5S^HUH sH51HRH9E1GH}%=IcD$8IT$H)H9U(LuH=!IHHx1-YWHA@HHLLL$ AQMAXAYLH=%!D$8IH1HxHL$IT$t$Lk\LHSIDHh@L1HEH@0]3IE L3ATHUHHH=} HD$ LHHuHxIHT$ 4t$ Hu HL]A\I$EHI$7LE1ff.ATIUHH^HtvHHx HHHH=HHI9tH9H|$L'ExIL'@AT1IH SHHHϗH8HYLL$(LD$D$ H\$(-'HL$(H9žHD$(HHHHL$(HHt$L5HL$(HT$Ht$ H=IHHt$ H|$LD$ HL$(HVHwHIHx[XH|$LEx ILH|$ LExILut$ H|$(u H8L[A\M$ExIM$uLE1HyH5H9H|$L'ExIL'v@AT1IH bSHHHH8HLL$(LD$D$ H\$(}'HL$(H9HD$(HHHHL$(HHt$L腮HL$(HT$Ht$ dH=5PIH~Ht$ H|$LD$ HL$(HVHwHIHxWH|$LEx ILH|$ LExILuVt$ H|$(8u H8L[A\M$ExIM$uLE1HyH5H9H|$L'ExIL'l@AT1IH SHHHoH8HLL$(LD$D$ H\$(HL$(H9bHD$(HHHHL$(HHt$LլHL$(HT$Ht$ 贬H=蠡IH:Ht$ H|$LD$ HL$(HVHwHIHxYH|$LEx ILH|$ LEx ILt:t$ H|$(荡XH8L[A\HyH5OH9!lf.AT1IH SHHHH8HyLL$(LD$D$ H\$(M)HL$(H9 HD$(HHpHHL$(HHt$LUHL$(HT$Ht$ 4H= IHHt$ H|$LD$ HL$(HVHwHIHx;bH|$LEx ILnH|$ LEx ILtt$ H|$( uH8L[A\ M$ExIM$uLE1HyH5H9BH|$L'ExIL'fAT1H SHHHH@HL%IL$$譿H$L9twHzH51H9u@RPHsH|$HHH|$H|$HWHH[A\HH51H87ЗH$Ht!HHH$Ho1fAT1IH "SHHHOH8HLL$(LD$D$ H\$(譾)HL$(H9 BHD$(HHHHL$(H&Ht$L赨HL$(HT$Ht$ 蔨H=e耝IHHt$ H|$LD$ HL$(HVHwHIHxAH|$LEx ILH|$ LEx ILtt$ H|$(muH8L[A\iM$ExIM$uLLE1HyH5 H9vH|$L'ExIL'fAT1IH SHHHH8H)LL$(LD$D$ H\$()HL$(H9 蒕HD$(HHHHL$(HHt$LHL$(HT$Ht$ H=ЛIHHt$ H|$LD$ HL$(HVHwHIHxEH|$LEx ILH|$ LEx ILtt$ H|$(轛uH8L[A\蹼M$ExIM$uL蜼E1HyH5\H9lH|$L'ExIL'fAT1IH SHHHH8HyLL$(LD$D$ H\$(MHL$(H9HD$(HeHHHL$(HHt$LU.HL$(HT$Ht$ 4=H= IHHt$ H|$LD$ HL$(HVHwHIHxkGH|$LEx ILH|$ LExILu&t$ H|$(u$H8L[A\HyH5H9M$ETIM$FLE1ʺAT1IH SHHHOH8HLL$(LD$D$ H\$(譹'HL$(H9BHD$(HHHHL$(H+Ht$L赣HL$(HT$Ht$ 蔣H=e耘IHHt$ H|$LD$ HL$(HVHwHIHxK^H|$LEx ILH|$ LExILu膹t$ H|$(hu H8L[A\M$ExIM$uLNE1HyH5H9}H|$L'ExIL'@AT1IH SHHHH8H)LL$(LD$D$ H\$('HL$(H9蒐HD$(HHHHL$(HhHt$LHL$(HT$Ht$ H=ЖIHHt$ H|$LD$ HL$(HVHwHIHx;_H|$LEx ILH|$ LExILuַt$ H|$(踖u H8L[A\M$ExIM$uL螷E1HyH5^H9H|$L'ExIL'@AT1IH bSHHHH8HyLL$(LD$D$ H\$(M'HL$(H9HD$(HHHHL$(HHt$LUHL$(HT$Ht$ 4H= IHHt$ H|$LD$ HL$(HVHwHIHx^H|$LEx ILH|$ LExILu&t$ H|$(u H8L[A\M$ExIM$uLE1HyH5H9iH|$L'ExIL'@USHH肕HrHsHH1H="衷HUxHHUKH[]@AWAVAUATLgUSHLHchHHJLhgIH)HnHMHcH=لHHD:IMH}e1谶IHPH=ME1LLL1*HHHLLLHH[]A\A]A^A_HEHgHIH01LHHHyH|$ IH71H;\$}$A0HcHIDHH=}E1LLL1ZHHHL"H{ eIH=lIH1H=1蕵IH`[ff.@UHH#HoHHx HH`HH]AT1IH SHHHH(H)ILD$H$8H $H9螊H$HHHH $HcHt$LH $HT$Ht$H=ߐIHHL$Ht$HxHQHvH|$LEx IL~H|$LEx ILt$H(L[A\HyH5H9Dϱff.fAT1IH SHHHOH(HٿILD$H$踰H $H9NH$HHHH $HHt$LÚhH $HT$Ht$裚PH=t菏IHHL$Ht$HxHQHvH|$LEx IL%H|$LExILu裰H(L[A\HyH5]H9:ff.@AT1IH SHHHH8HLL$(LD$H\$(e HL$(H9HD$(HHHHL$(HHt$LmHL$(HT$Ht$ LHL$ H|$HqHVH޽DAH|$LEx ILmH|$ LExILuHD$GHD$H8[A\HyH5H971ff.fHtUHHӆHPHHx HHAHH]qUHH蓆H/HHx HH HH]1ATUSLgMuH\H5p~H:蝮L[]A\A,$HeIHu$HQHsLձH H;tktfSH~HH5aH9u%H{s_H$[蒱uHH5k~H81[@ATHLgMqLsH5}I:购HĠLA\PHfZH ff.fPHfZHff.fUSHHRHGHh ft HS8HlXH[]!=QSHGH>H=[*ÐH1҅IH|$LƃHD$Hҹ҃{ff.AWAVAAUATUSH(H|$H IHD$D~1۽D$ L`f[Ld$=IL1IcLH(mD9HcA)IHHt#D!t멺t|$ uD$ L;d$t It$Ht$HD$f]H+D$H([]A\A]A^A_@UHSHQ;0t/-HHDAtHHU:HDZ[]Hff.fAUATUHSHfG>-HDfoIfHnHW( flHt$GGOO_AG>tIAZĀJ^AfE >OĀ\E1@^OH\$3DNA @ D#A0kIHBD`uY;,;.ƒߍz@v <%tN1;H[]A\A]L[L\$D#LDeIDHt$ LHy3HE"H\$bLcMmLd$SADU|Ht$ LHHE"MDH\$HM 9-LCAgGLD$;NAE@uHo eLPLU(H\$ELcEzLd$EU舭{LLIADxj@0L LHfInfInH\$LflL](]+IUAL\$LSLT$DLD]H@}AHt$K>qR3AA]DNA8E8DMAMcE9~(F,&IAEoE1L\$@LILHD$XLSATLD$8HL$0LT$(L\$HL$PHyHD$hY^HkH|$Ht$LIHL$ LD$(SATBLXZAH0F4L9v Ix[A^A_H=ZI)L1J4HHL?LL)I)I$HI1HI@IDK˘LHPAUIATIUHHuNHVHF(H|t"LHHLLH]A\A]wA}$tLHtӀeHt$IHt$t H]A\A]uAUIATIUHHu:HVHF(H|tDLHNtuHLLH]A\A]Ht$uIu(Ht$uA}$tLHteH]A\A]ff.@uuKH(HL$HT$Ht$H<$HH<$Ht$HT$HL$tH(u H(sH(f.AUIATIUHu2u-LH-1LA1AD]A\A]HLL$tAݐAUIATIUHHu6u1LH1LA1@AHD]A\A]HLLLD$@$tLD$AAATUHHHP.1HA1@DZ]A\ff.fUSHHh>щ8uTH uY@uNHHf AtDkAAAHh[]HUH9St|ADD)A@tЉ9LKLUMMHsLC @HM HC(@$HUHm(Ht$Ht$0@|$0HLD$ HT$@LL$HD$(LT$HHL$PHl$XHD$8HD$sA )AE1MA1MA)EATUHHHP.1HA15?DZ]A\ff.fHhoGoOHG(>oVD$o^HN(@Ht$0HD$(@HL$X@|$0H$L$T$8\$HHhfDSH7t#[fSHt3[fAWIAVIAUIATIUSH8 HVHF(H|Hl$@A}, LHD$dfofH$0L$0L$0L$0D$p0H$Ƅ$0L$Ƅ$0L$Ƅ$0L$(L$x$$$$$$$M9u!H$LLHIM]HT$LD$8IIH|$H5IL$Ht$LL$H$D$ $DT$ L$Ey IL$L$I $H+MLaKl L9fIKD L$HDH)D$:fDAWfAVAUATIUHSHHfo efoHT$foH$Ƅ$0H$H)H5yH$HHLHD$ Ƅ$$$$$4bHH+uLt$PIHuL HLLLHH\$PjdA $@H[]A\A]A^A_AWIfAVIAUIATMUHSHxfo THT$HD$pD$HHHD$hH\$@L$XHT$D$@0tHT$LLHA6MLHLH}LLHD$@Hx[]A\A]A^A_ATIUHQHwH(HwZH]A\@AWIϹ AVIAUATUHSHHH DLd$ LD$DA%Lk(LSKTHAH;<H;AH;[H;սLIHI;H{H{HHHHI;F;A~,bfofH$H$H$H$D$P0HL$xƄ$0H$Ƅ$0H$Ƅ$0H$L$XD$h$$$$$$H9oILD$H]H9HMHH] H9HZL[]A\A]A^A_H|uiYL[H]A\A]A^A_'15AWAVAUATUHSH(I ЃH~HMl$MIHNI9L$ H5!H} H9sHMsH9NML$(LS(L5{LL$LT$A I|$HD$NHT$L\$HJ4J L9H95TH95H95 H;5|EAE1E1A L5ZH1IHH1HIHHHH tKx*LHL]LA\LLA]A^A_鑴 uLLLuA$9u7IL$H9M@DkDGLABA]A\A]A^A_è tM)qff.HUHHSHAQ @ u E1ZD[]uDu6HELH*uH@uS(H3AAAH뼐AWMAVIAUIATIUHMLLHL=LHt)xeLHL]LA\LLA]A^A_uA$9u=IL$H9M@DkDGLABA cLLL)]A\A]A^A_è FpfAWIAVMAUIATIUHuTMLHLLQHLt=x)LHL]LA\LLA]A^A_1 uLLLoA4$E9u.HMI9L$@DkDGLABA]A\A]A^A_){ v=AWMAVIAUIATIUHuTMLHLLaHLt=x)LHL]LA\LLA]A^A_A uLLLA4$E9u$HMI9L$@DkDGLABA)]A\A]A^A_ y@f.AVAUIATIUHSHHpHBHH|$D$@HH|$hHD$H)HL$HHD$PHD$XHD$`HsLC(HT$HALHD$ I Ht$LLD$8HD$(LL$0xtNLt$H\$,HHL D$,u"HT$@ILLHD$,#D$,%A EHp[]A\A]A^LHH[uA$eLHHE uLSIL+LUAVAUIATIUHSHHpHBHH|$D$@HH|$hHD$H)HL$HHD$PHD$XHD$`HsLC(HT$HALHD$ I!Ht$LLD$8HD$(LL$0(tNLt$H\$,HHL輮D$,u"HT$@ILLHD$,D$,%A EHp[]A\A]A^LHH uA$eLHHJE uELSIL+LUAVIAUMATIUHSHuALH%tsLLHHy-^HCHCHI9D$[]A\A]A^Au@pAMuH{LC(I|uˁApAuE&LHHAEtD AE D 뒐AUIATIUHSHHyLLHEusHU(Hu1H|tlH9_HHIHk 1HHuHA|$(ID$tHI+$H+EIHH9LNL~LeH[]A\A]HH1[]A\A]6Ht$ Ht$ff.f уuOHuCLWL_(HʨK|t#HWHWHH=HH;VHMHju[LGHG(J|7LOLOHDIL;NH5nHMÀH DH>HDf.UHHSH1HHT$ D$ T$ 3H@uH[]HAWfAVIAUMATIUHSLH fotfoLfoH|$H$H$L$L$H$LT$HƄ$0Ƅ$0H$Ƅ$0L$Ƅ$0L$8HD$HƄ$@L$h$$$$$$$$($H$XDD:D D بH.LHHMHu(H|H}H}H;;AD$(HMNMV(K|uNM|$MT$(K|TH5lH 1ҋt$(H|$1HĨ []A\A]A^A_AM\$M|$(K|H\$PHԂHLD$lHH$1H|$et$ljLMHٿL$H$$LD$lELMHHL$$HDŽ$mEHT$MHL$LLHDŽ$Lt$^Lt$LLH5kLTLd$MHLLL+MHLLLMHLLL$ $ $CE1L$pL;t$y$Lt$LH5"kLH$@Ld$HT$rH^t(MHLLLMHLLLbMHLLLMHLLL:HT$MHHH$tH$H$H|d$ $:LD$A. D$(AL$$g$ L/DDD$(t$(H|$11H|$L tAAtGAMMLLl$LL,E]LD\$AAE]S(H3`AuALDMfAVAUMATUHSIHHV(HNH|H~HL)xbId LFIM9LLHLt0LeEu&LUL](K|tHEHEHH;C5[]A\A]A^LLH)H>IHtLeLHHHAAM΀@MEAM끉[L]A\1A]A^N ff.AVAUIATMUHHLt$ D$ MGLLHID$ A $AH]A\A]A^f.HO(HGH|tHGHH1AWfAVIAUMATIUHSHHfo4H$H$D$P0HD$xƄ$0H$L$XD$h$$A$IL$It$(H|I9MMLHL$HL$ 3E )H}LE(I|MT$LMM\$LMM)MIIH$H$HDH;HH;H;H;҃LcH=ʙD$N IL9oL$LL\$:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}{ Z c B ?B to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. subtract($self, x, y, /) -- Return the difference between x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. radix($self, /) -- Return 10. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. number_class($self, x, /) -- Return an indication of the class of x. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. multiply($self, x, y, /) -- Return the product of x and y. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_invert($self, x, /) -- Invert all digits of x. logical_and($self, x, y, /) -- Digit-wise and of x and y. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. exp($self, x, /) -- Return e ** x. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. copy_sign($self, x, y, /) -- Copy the sign from y to x. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. canonical($self, x, /) -- Return a new instance of x. add($self, x, y, /) -- Return the sum of x and y. abs($self, x, /) -- Return the absolute value of x. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. conjugate($self, /) -- Return self. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. localcontext($module, /, ctx=None, **kwargs) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module ?B?d d ?CLAMP_DEFAULTCLAMP_IEEE_754ROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCJ*m< d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ @ @ @ @ @ @ @ @@PT /builddir/build/BUILD/Python-3.12.6/Modules/_decimal/libmpdec/context.cmpd_setminalloc: ignoring request to set MPD_MINALLOC a second time illegal value for MPD_MINALLOC%s:%d: warning: %s:%d: error: c c &c c INITY%s, .,%s %s mpd_fprint: output error IEEE_Invalid_operationDivision_by_zeroNot_implementedConversion_syntaxDivision_impossibleDivision_undefinedFpu_errorInvalid_contextMalloc_error""=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"! $`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?ZF>N?e?m\@@AK(LhLlLL@(MhMMEM(NdNNO OOPtHPP=P\QHQQhDRitRRR S SSSTT|0TDTXTlTTUhU U0PVqWW;LXX%tY}YYYDZZZZ([d[[\(\gP\j\r\u\ ]'D]p]]|^"^H`Ppa`lb`b@c%cdete',f|pff$g\gg] Ph hrm>(o><s>Px>d>x>>Ċ>؊?\?EЋJKhSLMMLM`MtMMMMčM؍MN8NLN`NtNNSS4SHS\vT{TTЏT-U V80X&[x\$"^E^g^0_4_`__\2`p`a\c g8gdhj0j̘mPGmRmn@noorlrT1thbtȜHvPww\؉8Hh@ | ؔ  !p!Ș!!H("Ț8#(T#H#L$4%X&'.p5555(585X6(6xL7p787x7 <<4FhFx|G8OHRRRRSS,S@S(TS8hSX|SxSSTU|UU|VZ([x[x[]]]]^^^_$_8_L_l___\`p` ` aaaahbh cX dH)ex)eX4f>g(?8g8@pgAgXBdh8]hH_jXak(c$l(etleleTmmn(oHpȒpxyȕzD||~x$آȦ4x$xHX8ȑ( \H̒HDXؓt(Ԕ80(H|#(d8*ș:TJNܛR(`phii@jpXj$j|xk !kX!kd"l"l"mh#o$p%hr%s<&t&}'H}'}$(}<(~((~(H )xT)))( *ȃ|**H+xX+x+x+H@,,,,-(\-X-x..h/|/8//H$0ؗx0h00x1@1p181؛1x02p2H2x203ءp3383h04p4H4405H6X6Ȫ8hT8X88ȯ9\9(9H9x0:p:H:x:L;;X;<H<0=H= >>(>?,?@?x????p@@@APAxA(ABTB(BHBhCTCCCDTD8DhD ETE(EXEEGxH0HDHHHHdIII(J(JAa A Z] hAJ @ AA X>#(rBGL0w DBA  !Q0( sBHThcpRhA` DBA  *(pt:BCQP DBA $vE(u,BCQP DBA d{o(v,BCQP DBA o(0w,BCQP DBA ١o pxBS@ BA zRx @ (Py,BCQP DBA x¡o( @z,BCQP DBA o(D 0{BGL0w DBA T Q( {,BCQP DBA 81o( |BGL@a DBA zRx @ D ( !|BGL0w DBA 0Q(`!$}BGL0w DBA p"Q(!}BGL@a DBA 3 L!BBA O BBE W EBA A HBE AHBzRx  $ ABBl"X}GAf A ^""`}QAR0|AzRx 0 D<#p}BBB A(D0N@l0D(A BBB` LHX#}BBB B(A0A8GT 8A0A(B BBBA $zRx ,ϠSP#BDB B(N0D@ 0D(B BBBA H]PJHB@ zRx @($(l$BDQ0 DBA |z($HBDG0t DBA B$%0%BLA G0B  DBBA zRx 0$ɟ|%ȃ$A^%܃ %؃LBe A D% BMA J^DEAPG AABzRx $ :D&0ArNH\&hBBB B(A0A8G` 8D0A(B BBBA #˞K&)Ad A A&)Ad A A$'8'(L'BJT0 DBA zRx 0 B ('LAJT0[ AAA P +('AJT0[ AAA  +(((BJT0 DBA  (h(BJT0 DBA   ((lBJT0 DBA ` ((LBJT0 DBA L ((),BJT0 DBA  (h) BJT0 DBA   ()BJT0 DBA ` ()̏AJT0Q AAA  $0(*\wBKA Tp  DBBA zRx p$4d?AG iI/ɟD CA L 5xzBBB F(D0A8DH 8D0A(B BBBF 2|(p5CBMQ@ DBA )(5ABMQ@ DBA (5$SBMQP ABA H+$06D D6@?AG iIL1D CA 6D?AG iI1iD CA (6HwBAA c ABA T.@66\Aw A bT/B A E 479BGjEzRx L DPDGDGDGDGDGDGk7dAJ7lAJ$7t/AAH [DA8,8h/H\0F E `8}>t8}8}838}88}8}9}9}(9}<9} P9}d9}x9}9I98 9.9;9ȡ;9i:D:4,:$@:T:Hl:}V BGB B(A0D8DpV 8A0A(B BBBJ zRx p(KH:BBB H(A0D8D` 8A0A(B BBBD 7HP;4[BEB H(A0C8G`& 8A0A(B BBBA 7;%L;4 [FB E(A0A8 0D(B BBBA   zRx 8(ؠA8<-D h(P<$[BGA p ABA |<xD<BBE B(A0A8D`8A0A(B BBB09e(<CADD q AAA 8=,BBA D(D@ (A ABBA zRx @$ݟl=|QBFB B(A0A8G 8A0A(B BBBA BrAdBOA$zRx ,\4>0BBE E(A0A8A@X 8A0A(B BBBA B8H0D(E EBB<>*3B 8D0F(B BBBE B8D0G(B BBB>0RH>|KBDB B(A0D8G`r 8A0A(B BBBA 4?;4H?XBBD D(G`~(A ABB?ɟ-D h4?ޟQBBJ D(G`p(A BBBD?BBE I(A0A8DP8A0A(B BBBD@QBIE E(D0D8D@T8A0A(B BBB$`@hBND0PAB @ɠ_AQ KA@(@$@ {BFD hDB @$A|BAD qABH@8LA(BEE D(N0X (A ABBA 4AUBBD D(G0{(A ABB='A$A/DGE \AA0, B$B$8B\EEA IEBzRx   BB$B0BAD eAB4BBEK D(A0d(A ABB(C۟_TGD zAAA$DCDADK qAAlCطC$C "CC(o|CBBB E(D0D8D@K 8A0A(B BBBD ` 8A0A(B BBBA  8A0A(B BBBE C^@@dDbBBB D(D0D@p 0A(A BBBA :FDDDD E ET4AO H V@EtLTEpBED G0_  JBBE _  ABBA V ABELE= BIB H(A0D8J 8A0A(B BBBD $zRx ,V0Fd \DF`BEA A(G0  (C ABBK W (A ABBC e (A ABBA LFKBA A(G0 (A ABBA C0LFBBD D(D0 (A ABBA A (D GBBB B؞XG,$lG0AAE fAA4G JG a AE J FA hF HGrBIE B(D0D8G  8A0A(B BBBA $zRx  ,LTH BIB E(D0D8G o 8A0A(B BBBF $zRx  ,`0HTBAD D0  DABA 8C˟|(I\BEE E(D0D8GPK 8J0A(B BBBE @ 8A0A(B BBBA d 8J0A(B BBBE <Iwf 8L0A(B BBBE a8C0F(B BBBLI<BFE E(D0D8G 8A0A(B BBBH $zRx ,QHtJKBIE E(D0D8G 8A0A(B BBBA $zRx ,џ'HJhCBIE E(D0D8G 8A0A(B BBBA (\K&BED RBBLK BBB B(D0D8J 8A0A(B BBBB $zRx ,U,L>BDC G0i AABhFOXL lL LL^ BEE E(D0D8D 8A0A(B BBBC DJǟLoL M B A z E K|@DMBFB B(A0J 0A(B BBBA zRx (vLMBED G0a  JBBE h  ABBA G GBDN$N)L8NBIB E(D0A8G 8A0A(B BBBA $zRx ,HN@BBB B(D0A8D 8D0A(B BBBA L.($OBKA | BBA zRx  $j @OBED G0d  JBBE s  ABBA <O\BED G0l  JBBE z ABB PfY0s A K E D(,P_BED u BBA 8XPBED D(G@ (A ABBA DO80PxBED G0r  DBBA $P83BAJ bAB(QP_AAGN AAA $0Q3BAJ bABXQjDpepQAUQAU8Q|BED D(G@ (A ABBD 768QBED D(G@ (A ABBA C(HRkBDG t GBE L RLRLBEE E(D0A8G 8A0A(B BBBA $zRx ,L(SL)BFE B(A0A8G 8A0A(B BBBA $zRx ,<S!kBBE D(D0DPM0A(A BBB zRx P(,,TȵVVAD0P AAA g\T=pT$ T 5TƨT8!T$1T !LT<BEB B(D0D8J 8A0A(B BBBA $zRx ,=LtU@zBIB E(D0D8J( 8A0A(B BBBA ڨHU\BKB B(D0D8J 8A0A(B BBB$zRx  ,XiX`V~BEB D(D0D@ 0D(A BBBC X 0A(A BBBA LQkV!HV`BIE E(D0D8G8A0A(B BBB$zRx , #$lW,BDD WDBRgcABLWBJE B(A0D8M 8A0A(B BBBA $zRx ,کh 08iBDD I0x  AABA cl(itKKDM dFAAiUDP[ͫ iëPAiDJvADb߫  jիPA`8jBBE E(D0G8DJ 8D0A(B BBBE 8G0D(B BBB(h. 8A0E(B BBBE Hj &BEE B(A0A8D` 8D0A(B BBBA lg_(k FC0+C,@C4EBh/CP`dCPZ`CZ_C e`\Cg[Cg`[CpiZCjYCpx@RCwQCpxQD`u`SDC`h DDgDFg"DL`e)DMe4DOdKC``^;Da]FCb@]CDc\KDe \TD@h[`DmViDPnVsDo@UDvSD k@WDpQ dDiD0hDVDpcD`U`cDUcDpVbDW@bDWaD XaDX aD0Y`EY`` EzDp hEJ@fEJk&EJe2E[`_7E`]^FEj@ZSEy QaE0wRoE0G g}E0HfEpKeE0\ _E^^E0_`^EpTEqTEs TE0tSE@|lElE)Ex F) lF} kF`j/CC@CC@C`C@CqCp`pC oDP t DpD KCЦ;DFC0`CDTD`D0 ~sD{D SD@D Dp@D@D``D``DEDDЊ7F0@D`@F@@D0`}E&E`2E@7E @FEaEroE`}EE.EwEE`E@E@yE`wEt,FJF@E`SF`BE`FjFsFp}F F*FPp-@fP3P0=A0APBP|* 2@bFСFF<F=@CPvXJCvzECv0z CpvXOCvzXCv0{ F@+wiGFpGFFFGFFFYGGGGFFFF GG(G GBG:GFFYGQGpGhGGGGG@G GG@GGGGF`0I@X p7G =G`ZW{m76 HhpT={PQ[ BĴG˱GܱGGGG˱%G/?ܱGGGj.Jr+7GA$3a1p5GA$3a101 5_decimal.cpython-312-x86_64-linux-gnu.so-3.12.6-1.el8.x86_64.debugt7zXZִF!t/O]?Eh=ڊ2Nbzf6ӫY_n#Ot/ϯ~pƥ*J:b6&Yqh_>}'Ďű0 /f ӲC+q 2\E/LkںJfk{1Ϟa> Sڗ٪4q< ιZvEF2!"xֳqOْ%TJu>1HH$Vj))Sc#9lIO|]܅߅LNo˙kgnxj$-s8-ۓV%&[喍/:}Uufi$+0Q}4qV?4l efwhv lYSWoqДL};)gQBX꾾"6y.ij~l_LW~KJ/)(ֳDԱ7<APBm:xE[} my]WMZA =dp>mE&O^R9xk0(:C,Ƃ\WddNjb4UN*8. LuD'x$YXH0 t8KJw%L6l+!$ & n2F?w7>_hh`@}Ѳk]TuJe0ѣ[Y/v`Q`^ {UHnw\M$$HU"w]YTic gbly.%ySR d?.K%.+Wcҳ-?.ejxLi w-^D89@:7;}A cB\Ӫ}ofit9nY5NC&YN9Z2LkXg)$kY}9j}OVP#NEd瑓r&I_qeJ5$r u 3fXQ54US&`s<'~Gpl3ky&\P]鉳\ U 'N*& 7AS`R'چHb }cfƽɀt["dbgn\F ։i-3Hw $>}\EH>8հXYOacz%dVGK whEDq@;{SwZu>zW/@qKjm[ױI܌|l9L!Hԉb?`98YdY8<7U$)4!717=tm".Ĺ}HUǒL»φƵ2;Xv i1$%LsjpLJۿUmЧU6ncċƦf*xK/ɺHN0u1[U.H ϙfJ-I*x`N(뛭.hCͣkdiVQ)~R r՜ jg|IP-~:O}3V{`a瘠A-LyU4Xx,`a1[=dBǻ}"乞Ҏpp%7?wnf:wIfQ5YT*OHߝDʀCxrSEd.6?GVԲ~cB9\ W/B8P8uSG^H%Unh ~11B {A@w3Dd,a56 zLU;:BHx`(0@UMA=|jW؂yK>.Q8T晪_O`0 ZE*i#i-I=?6 Gr]&@HKV >~5>ŏk$~EnH#U*=ْEnk_=r)Ӓc)0H M0 gR|{CQd^4\F;nB{5,`?ؕ#!qOB f81P(멣N<T;zy)?vZq}K3dcq㝧.* 1B(\Gb o86 f.q:U$6eYP1qZΐ7]+(|C1؍km츌9̻2FET Az I7XJ `H˷lOgsUs sIX~dRQ2??KwTR M5nLpSAgNm; |Ns,&9LG"RBUvo-1*_.vc)aY 2s+"Qs mMMNՏisاlJnؚCgwu:z-Q@9Ţ+\09&)$(ycd+fX;*y J;|fdN)l@/ubzRF`8VuSpBJ8:H2eۺh%_r=q3V<\x~2y W:@MNjGAAD Ōɿd XT7UL, ڿBS!5c(kDXG+0¨޺KDyQ A@99k=h.$N9[ |ڞ+_E=hX82xܞSdM$_l̎Hx3/so?J|d8;gvl/Yȷ.%FZ%S%-KYh׫.\)sA ͞Ho%7{Ӕ*/?^/qhr.g6FJ]_uqK. SLy7yy>6w|4/iLxpŁЗOT$7{k;"%-%1̻' &OOx4PoTWbxEާ ׮5Gs)q"b`D-^.xu1(L']K/R%' (ZN" MiG|6ۻ1sV״y@ӯ9-a|ct7!u|agP TyIZ^#9 ui=|p6=rwOgJIͷVt>ҳZ0e{mC,삗r+[Σy{ 6xBFתȞYj9sx㊈ z;_XBwC& b² x-iyɍ"aCGxvmd{ދwEZO5h4?9a\K F}#!3>84pSZQV.du"tS%>5M5y7 UT0@Fq'饲&^7ΆPND^f|;bJ Rր?;ؾ_/Ig0qm ǁi]7p7/1h f0mJsT/g-A7!AW+џY)絗;{&7&]ftzEt-KS(V=6kGStp'`w鈴QC gAZv솝w\}nEeE[ݺ+p_  П}HrHќU$)AÍ]tNl$ ,$Q0ok ޫN^rL6Cy,;Ԣ muG|Di-dʐT^f;+)į2qKV͙|iׄV L:9! wMs c5ʌ.z܁\0$C/&>k xs{PѬgI.gΛ6*Zn1D"\?q"{w {J*,øASI$9:)M4 Ͳ9oIK$Dq@+ʣųUɉTI_Vixa:S̳;BV֧@Z!Fȵ%hv• y.)3!pV7 ߨDDw u 5{_[UuE~Gp0kB&LsϬ+e2W? ^EogʀM XW?}̼;dt/0qk A=BhFՈ*il`NF=‰EʞBdop?agz "eH9BO%H}N0]4; $7-KBp6PSZ'C`( P]uU!l]+wUT'mE~5pyB]sD"K<q?cil05f fddׂH(s2q c}{)ÕE2{[`XB#y®Wk_x0PE_֬"'=g eV=]L镽(`8Lc]p{r(*:)aM:̞v}0f%r O[W/9 oUE 4Ux4=(zɡօC(^N摠| )ZMѭ Ye`w;hs3ErZhКgYZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu.build.attributes.gnu_debuglink.gnu_debugdata 88$o``$( 0 08oEoT((@^B Z Z0 hppc p p0nPvPvt55 z@@ ,`xhxh x h yi|lp$  H(Hp8