U if@sbdZdZGdddZGdddeZGdddeZGdd d eZGd d d eZd d ZdS)zAbstract Protocol base classes.) BaseProtocolProtocolDatagramProtocolSubprocessProtocolBufferedProtocolc@s4eZdZdZdZddZddZddZd d Zd S) ra Common base class for protocol interfaces. Usually user implements protocols that derived from BaseProtocol like Protocol or ProcessProtocol. The only case when BaseProtocol should be implemented directly is write-only transport like write pipe cCsdS)zCalled when a connection is made. The argument is the transport representing the pipe connection. To receive data, wait for data_received() calls. When the connection is closed, connection_lost() is called. Nr)selfZ transportrr6/opt/alt/python38/lib64/python3.8/asyncio/protocols.pyconnection_madeszBaseProtocol.connection_madecCsdS)zCalled when the connection is lost or closed. The argument is an exception object or None (the latter meaning a regular EOF is received or the connection was aborted or closed). Nrrexcrrrconnection_lostszBaseProtocol.connection_lostcCsdS)aCalled when the transport's buffer goes over the high-water mark. Pause and resume calls are paired -- pause_writing() is called once when the buffer goes strictly over the high-water mark (even if subsequent writes increases the buffer size even more), and eventually resume_writing() is called once when the buffer size reaches the low-water mark. Note that if the buffer size equals the high-water mark, pause_writing() is not called -- it must go strictly over. Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water mark. These end conditions are important to ensure that things go as expected when either mark is zero. NOTE: This is the only Protocol callback that is not called through EventLoop.call_soon() -- if it were, it would have no effect when it's most needed (when the app keeps writing without yielding until pause_writing() is called). Nrrrrr pause_writing%szBaseProtocol.pause_writingcCsdS)zvCalled when the transport's buffer drains below the low-water mark. See pause_writing() for details. Nrr rrrresume_writing;szBaseProtocol.resume_writingN) __name__ __module__ __qualname____doc__ __slots__r r rrrrrrr s  rc@s$eZdZdZdZddZddZdS)ranInterface for stream protocol. The user should implement this interface. They can inherit from this class but don't need to. The implementations here do nothing (they don't raise exceptions). When the user wants to requests a transport, they pass a protocol factory to a utility function (e.g., EventLoop.create_connection()). When the connection is made successfully, connection_made() is called with a suitable transport object. Then data_received() will be called 0 or more times with data (bytes) received from the transport; finally, connection_lost() will be called exactly once with either an exception object or None as an argument. State machine of calls: start -> CM [-> DR*] [-> ER?] -> CL -> end * CM: connection_made() * DR: data_received() * ER: eof_received() * CL: connection_lost() rcCsdS)zTCalled when some data is received. The argument is a bytes object. Nr)rdatarrr data_received^szProtocol.data_receivedcCsdSzCalled when the other end calls write_eof() or equivalent. If this returns a false value (including None), the transport will close itself. If it returns a true value, closing the transport is up to the protocol. Nrr rrr eof_receiveddszProtocol.eof_receivedN)rrrrrrrrrrrrBsrc@s,eZdZdZdZddZddZddZd S) raInterface for stream protocol with manual buffer control. Important: this has been added to asyncio in Python 3.7 *on a provisional basis*! Consider it as an experimental API that might be changed or removed in Python 3.8. Event methods, such as `create_server` and `create_connection`, accept factories that return protocols that implement this interface. The idea of BufferedProtocol is that it allows to manually allocate and control the receive buffer. Event loops can then use the buffer provided by the protocol to avoid unnecessary data copies. This can result in noticeable performance improvement for protocols that receive big amounts of data. Sophisticated protocols can allocate the buffer only once at creation time. State machine of calls: start -> CM [-> GB [-> BU?]]* [-> ER?] -> CL -> end * CM: connection_made() * GB: get_buffer() * BU: buffer_updated() * ER: eof_received() * CL: connection_lost() rcCsdS)aPCalled to allocate a new receive buffer. *sizehint* is a recommended minimal size for the returned buffer. When set to -1, the buffer size can be arbitrary. Must return an object that implements the :ref:`buffer protocol `. It is an error to return a zero-sized buffer. Nr)rsizehintrrr get_bufferszBufferedProtocol.get_buffercCsdS)zCalled when the buffer was updated with the received data. *nbytes* is the total number of bytes that were written to the buffer. Nr)rnbytesrrrbuffer_updatedszBufferedProtocol.buffer_updatedcCsdSrrr rrrrszBufferedProtocol.eof_receivedN)rrrrrrrrrrrrrms  rc@s$eZdZdZdZddZddZdS)rz Interface for datagram protocol.rcCsdS)z&Called when some datagram is received.Nr)rrZaddrrrrdatagram_receivedsz"DatagramProtocol.datagram_receivedcCsdS)z~Called when a send or receive operation raises an OSError. (Other than BlockingIOError or InterruptedError.) Nrr rrrerror_receivedszDatagramProtocol.error_receivedN)rrrrrrrrrrrrsrc@s,eZdZdZdZddZddZddZd S) rz,Interface for protocol for subprocess calls.rcCsdS)zCalled when the subprocess writes data into stdout/stderr pipe. fd is int file descriptor. data is bytes object. Nr)rfdrrrrpipe_data_receivedsz%SubprocessProtocol.pipe_data_receivedcCsdS)zCalled when a file descriptor associated with the child process is closed. fd is the int file descriptor that was closed. Nr)rrr rrrpipe_connection_lostsz'SubprocessProtocol.pipe_connection_lostcCsdS)z"Called when subprocess has exited.Nrr rrrprocess_exitedsz!SubprocessProtocol.process_exitedN)rrrrrr r!r"rrrrrs rcCst|}|r||}t|}|s*td||krL||d|<||dS|d||d|<||||d}t|}qdS)Nz%get_buffer() returned an empty buffer)lenr RuntimeErrorr)protorZdata_lenZbufZbuf_lenrrr_feed_data_to_buffered_protos     r&N)r__all__rrrrrr&rrrrs9+9